Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Nonlinear semelparous leslie models.

Cushing JM.

Math Biosci Eng. 2006 Jan;3(1):17-36.

PMID:
20361805
2.

Three stage semelparous Leslie models.

Cushing JM.

J Math Biol. 2009 Jul;59(1):75-104. doi: 10.1007/s00285-008-0208-9. Epub 2008 Sep 6.

PMID:
18777023
3.

Stable bifurcations in semelparous Leslie models.

Cushing JM, Henson SM.

J Biol Dyn. 2012;6 Suppl 2:80-102. Epub 2012 Aug 31.

PMID:
22937804
5.

Multiple attractors and boundary crises in a tri-trophic food chain.

Boer MP, Kooi BW, Kooijman SA.

Math Biosci. 2001 Feb;169(2):109-28.

PMID:
11166318
6.

Bifurcations of orbit and inclination flips heteroclinic loop with nonhyperbolic equilibria.

Geng F, Zhao J.

ScientificWorldJournal. 2014;2014:585609. doi: 10.1155/2014/585609. Epub 2014 Mar 23.

7.

A bifurcation theorem for evolutionary matrix models with multiple traits.

Cushing JM, Martins F, Pinto AA, Veprauskas A.

J Math Biol. 2017 Aug;75(2):491-520. doi: 10.1007/s00285-016-1091-4. Epub 2017 Jan 6.

PMID:
28062892
8.

Equilibrium properties of a multi-locus, haploid-selection, symmetric-viability model.

Chasnov JR.

Theor Popul Biol. 2012 Mar;81(2):119-30. doi: 10.1016/j.tpb.2011.12.004. Epub 2011 Dec 21. Review.

PMID:
22210391
9.

Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems.

Postlethwaite CM, Brown G, Silber M.

Philos Trans A Math Phys Eng Sci. 2013 Aug 19;371(1999):20120467. doi: 10.1098/rsta.2012.0467. Print 2013 Sep 28.

PMID:
23960225
10.

Darwinian dynamics of a juvenile-adult model.

Cushing JM, Stump SM.

Math Biosci Eng. 2013 Aug;10(4):1017-44. doi: 10.3934/mbe.2013.10.1017.

11.

Multiple endemic states in age-structured SIR epidemic models.

Franceschetti A, Pugliese A, Breda D.

Math Biosci Eng. 2012 Jul;9(3):577-99. doi: 10.3934/mbe.2012.9.577.

12.

Consequences of population models for the dynamics of food chains.

Kooi BW, Boer MP, Kooijman SA.

Math Biosci. 1998 Nov;153(2):99-124.

PMID:
9825635
13.

Single-class orbits in nonlinear Leslie matrix models for semelparous populations.

Kon R, Iwasa Y.

J Math Biol. 2007 Nov;55(5-6):781-802. Epub 2007 Jul 17.

PMID:
17639397
14.

Equilibria in structured populations.

Cushing JM.

J Math Biol. 1985;23(1):15-39.

PMID:
4078497
15.

Cycling chaotic attractors in two models for dynamics with invariant subspaces.

Ashwin P, Rucklidge AM, Sturman R.

Chaos. 2004 Sep;14(3):571-82.

16.

Ecological consequences of global bifurcations in some food chain models.

van Voorn GA, Kooi BW, Boer MP.

Math Biosci. 2010 Aug;226(2):120-33. doi: 10.1016/j.mbs.2010.04.005. Epub 2010 May 4.

PMID:
20447411
17.

Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain.

Liao X, Li S, Chen G.

Neural Netw. 2004 May;17(4):545-61.

PMID:
15109683
18.

Multiple limit cycles in the standard model of three species competition for three essential resources.

Baer SM, Li B, Smith HL.

J Math Biol. 2006 Jun;52(6):745-60. Epub 2006 Feb 7.

PMID:
16463185
19.

On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex.

Jiang J, Niu L.

J Math Biol. 2017 Apr;74(5):1223-1261. doi: 10.1007/s00285-016-1052-y. Epub 2016 Sep 17.

PMID:
27639701
20.

Supplemental Content

Support Center