Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

SWISS MADE: Standardized WithIn Class Sum of Squares to evaluate methodologies and dataset elements.

Cabanski CR, Qi Y, Yin X, Bair E, Hayward MC, Fan C, Li J, Wilkerson MD, Marron JS, Perou CM, Hayes DN.

PLoS One. 2010 Mar 26;5(3):e9905. doi: 10.1371/journal.pone.0009905.

2.

Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data.

Chen JJ, Hsueh HM, Delongchamp RR, Lin CJ, Tsai CA.

BMC Bioinformatics. 2007 Oct 25;8:412.

3.

Visualization methods for statistical analysis of microarray clusters.

Hibbs MA, Dirksen NC, Li K, Troyanskaya OG.

BMC Bioinformatics. 2005 May 12;6:115.

4.
5.

cluML: A markup language for clustering and cluster validity assessment of microarray data.

Bolshakova N, Cunningham P.

Appl Bioinformatics. 2005;4(3):211-3.

PMID:
16231963
6.

Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

Guzzi PH, Cannataro M.

Comput Methods Programs Biomed. 2013 Aug;111(2):402-9. doi: 10.1016/j.cmpb.2013.04.006. Epub 2013 May 31.

PMID:
23731720
7.

The PowerAtlas: a power and sample size atlas for microarray experimental design and research.

Page GP, Edwards JW, Gadbury GL, Yelisetti P, Wang J, Trivedi P, Allison DB.

BMC Bioinformatics. 2006 Feb 22;7:84.

8.

Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.

Shedden K, Chen W, Kuick R, Ghosh D, Macdonald J, Cho KR, Giordano TJ, Gruber SB, Fearon ER, Taylor JM, Hanash S.

BMC Bioinformatics. 2005 Feb 10;6:26.

9.
10.

Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays.

Seo J, Bakay M, Chen YW, Hilmer S, Shneiderman B, Hoffman EP.

Bioinformatics. 2004 Nov 1;20(16):2534-44. Epub 2004 Apr 29.

PMID:
15117752
11.
12.
13.
14.

Clustering microarray gene expression data using weighted Chinese restaurant process.

Qin ZS.

Bioinformatics. 2006 Aug 15;22(16):1988-97. Epub 2006 Jun 9.

PMID:
16766561
15.

Can Zipf's law be adapted to normalize microarrays?

Lu T, Costello CM, Croucher PJ, Häsler R, Deuschl G, Schreiber S.

BMC Bioinformatics. 2005 Feb 23;6:37.

16.

RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.

Sîrbu A, Kerr G, Crane M, Ruskin HJ.

PLoS One. 2012;7(12):e50986. doi: 10.1371/journal.pone.0050986. Epub 2012 Dec 10.

17.

HDBStat!: a platform-independent software suite for statistical analysis of high dimensional biology data.

Trivedi P, Edwards JW, Wang J, Gadbury GL, Srinivasasainagendra V, Zakharkin SO, Kim K, Mehta T, Brand JP, Patki A, Page GP, Allison DB.

BMC Bioinformatics. 2005 Apr 6;6:86.

18.

Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays.

Wang Y, Barbacioru C, Hyland F, Xiao W, Hunkapiller KL, Blake J, Chan F, Gonzalez C, Zhang L, Samaha RR.

BMC Genomics. 2006 Mar 21;7:59.

19.

SoFoCles: feature filtering for microarray classification based on gene ontology.

Papachristoudis G, Diplaris S, Mitkas PA.

J Biomed Inform. 2010 Feb;43(1):1-14. doi: 10.1016/j.jbi.2009.06.002. Epub 2009 Jul 1.

20.

The effect of oligonucleotide microarray data pre-processing on the analysis of patient-cohort studies.

Verhaak RG, Staal FJ, Valk PJ, Lowenberg B, Reinders MJ, de Ridder D.

BMC Bioinformatics. 2006 Mar 2;7:105.

Supplemental Content

Support Center