Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Artificial hydrogenases.

Barton BE, Olsen MT, Rauchfuss TB.

Curr Opin Biotechnol. 2010 Jun;21(3):292-7. doi: 10.1016/j.copbio.2010.03.003. Epub 2010 Mar 30.

2.

[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.

Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MW.

Biochim Biophys Acta. 2015 Jun;1853(6):1350-69. doi: 10.1016/j.bbamcr.2014.11.021. Epub 2014 Nov 24. Review.

3.

Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.

Wang N, Wang M, Chen L, Sun L.

Dalton Trans. 2013 Sep 14;42(34):12059-71. doi: 10.1039/c3dt51371h. Epub 2013 Jul 11.

PMID:
23846321
4.

Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts.

Sbraccia C, Zipoli F, Car R, Cohen MH, Dismukes GC, Selloni A.

J Phys Chem B. 2008 Oct 23;112(42):13381-90. doi: 10.1021/jp803657b. Epub 2008 Oct 1.

PMID:
18826265
6.

Maturation of hydrogenases.

Böck A, King PW, Blokesch M, Posewitz MC.

Adv Microb Physiol. 2006;51:1-71. Review.

PMID:
17091562
7.

Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.

Wang M, Chen L, Li X, Sun L.

Dalton Trans. 2011 Dec 28;40(48):12793-800. doi: 10.1039/c1dt11166c. Epub 2011 Oct 10. Review.

PMID:
21983599
8.

[Recent advances on the structure and catalytic mechanism of hydrogenase].

Liu JJ, Long MN.

Sheng Wu Gong Cheng Xue Bao. 2005 May;21(3):348-53. Review. Chinese.

PMID:
16108354
9.

Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic.

Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T.

Nat Chem Biol. 2013 Oct;9(10):607-9. doi: 10.1038/nchembio.1311. Epub 2013 Aug 11.

10.

Formaldehyde--a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases.

Wait AF, Brandmayr C, Stripp ST, Cavazza C, Fontecilla-Camps JC, Happe T, Armstrong FA.

J Am Chem Soc. 2011 Feb 9;133(5):1282-5. doi: 10.1021/ja110103p. Epub 2011 Jan 4.

PMID:
21204519
11.
12.

Photocatalytic hydrogen evolution from rhenium(I) complexes to [FeFe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway.

Wang HY, Wang WG, Si G, Wang F, Tung CH, Wu LZ.

Langmuir. 2010 Jun 15;26(12):9766-71. doi: 10.1021/la101322s.

PMID:
20469832
13.
14.

Hydrogenases and H(+)-reduction in primary energy conservation.

Vignais PM.

Results Probl Cell Differ. 2008;45:223-52. doi: 10.1007/400_2006_027. Review.

PMID:
18500479
15.

Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.

Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S.

Annu Rev Biochem. 2010;79:507-36. doi: 10.1146/annurev.biochem.030508.152103. Review.

PMID:
20235826
16.

Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution.

Wang WG, Wang F, Wang HY, Si G, Tung CH, Wu LZ.

Chem Asian J. 2010 Aug 2;5(8):1796-803. doi: 10.1002/asia.201000087.

PMID:
20544787
17.

A third type of hydrogenase catalyzing H2 activation.

Shima S, Thauer RK.

Chem Rec. 2007;7(1):37-46. Review.

PMID:
17304591
18.

The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.

Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U.

Science. 2008 Jul 25;321(5888):572-5. doi: 10.1126/science.1158978.

19.
20.

DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer?

Filippi G, Arrigoni F, Bertini L, De Gioia L, Zampella G.

Inorg Chem. 2015 Oct 5;54(19):9529-42. doi: 10.1021/acs.inorgchem.5b01495. Epub 2015 Sep 11.

PMID:
26359661

Supplemental Content

Support Center