Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.

Roseguini BT, Mehmet Soylu S, Whyte JJ, Yang HT, Newcomer S, Laughlin MH.

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1991-2000. doi: 10.1152/ajpheart.00006.2010. Epub 2010 Mar 26.

2.

Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

Roseguini BT, Arce-Esquivel AA, Newcomer SC, Laughlin MH.

Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1658-68. doi: 10.1152/ajpregu.00457.2011. Epub 2011 Sep 28.

3.

Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.

Sheldon RD, Roseguini BT, Thyfault JP, Crist BD, Laughlin MH, Newcomer SC.

J Appl Physiol (1985). 2012 Jun;112(12):2099-109. doi: 10.1152/japplphysiol.00042.2012. Epub 2012 Mar 22.

4.

Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency.

Roseguini BT, Arce-Esquivel AA, Newcomer SC, Yang HT, Terjung R, Laughlin MH.

J Appl Physiol (1985). 2012 May;112(9):1556-63. doi: 10.1152/japplphysiol.01337.2011. Epub 2012 Feb 23.

5.

Vascular endothelial growth factor mRNA and protein do not change in parallel during non-inflammatory skeletal muscle ischaemia in rat.

Milkiewicz M, Hudlicka O, Shiner R, Egginton S, Brown MD.

J Physiol. 2006 Dec 1;577(Pt 2):671-8. Epub 2006 Sep 21.

6.

Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle.

Hellsten Y, Rufener N, Nielsen JJ, Høier B, Krustrup P, Bangsbo J.

Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R975-82. Epub 2007 Dec 19.

PMID:
18094062
7.

Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise.

Rodriguez-Miguelez P, Lima-Cabello E, Martínez-Flórez S, Almar M, Cuevas MJ, González-Gallego J.

J Appl Physiol (1985). 2015 Apr 15;118(8):1075-83. doi: 10.1152/japplphysiol.00780.2014. Epub 2015 Mar 6.

PMID:
25749442
8.

Angiogenic growth factor expression in rat skeletal muscle in response to exercise training.

Lloyd PG, Prior BM, Yang HT, Terjung RL.

Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1668-78. Epub 2003 Jan 23.

PMID:
12543634
9.

Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles.

Tan X, Qi WN, Gu X, Urbaniak JR, Chen LE.

J Biomech. 2006;39(13):2430-7. Epub 2005 Oct 12.

PMID:
16225881
10.

Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.

Messere A, Ceravolo G, Franco W, Maffiodo D, Ferraresi C, Roatta S.

J Appl Physiol (1985). 2017 Dec 1;123(6):1451-1460. doi: 10.1152/japplphysiol.00511.2017. Epub 2017 Aug 17.

PMID:
28819006
11.

Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle.

Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ.

Am J Physiol. 1999 Feb;276(2 Pt 2):H679-85.

PMID:
9950871
12.

Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor.

Yamada M, Kim S, Egashira K, Takeya M, Ikeda T, Mimura O, Iwao H.

Arterioscler Thromb Vasc Biol. 2003 Nov 1;23(11):1996-2001. Epub 2003 Sep 18.

13.
14.

Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro.

Xu Q, Wang S, Jiang X, Zhao Y, Gao M, Zhang Y, Wang X, Tano K, Kanehara M, Zhang W, Ishida T.

Clin Exp Pharmacol Physiol. 2007 Jul;34(7):624-31.

PMID:
17581219
15.

Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia.

Ryu J, Lee CW, Hong KH, Shin JA, Lim SH, Park CS, Shim J, Nam KB, Choi KJ, Kim YH, Han KH.

Cardiovasc Res. 2008 May 1;78(2):333-40. Epub 2007 Nov 11.

PMID:
18006432
16.

The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle.

Høier B, Rufener N, Bojsen-Møller J, Bangsbo J, Hellsten Y.

J Physiol. 2010 Oct 1;588(Pt 19):3833-45. doi: 10.1113/jphysiol.2010.190439.

17.

Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle.

Roca J, Gavin TP, Jordan M, Siafakas N, Wagner H, Benoit H, Breen E, Wagner PD.

J Appl Physiol (1985). 1998 Sep;85(3):1142-9.

PMID:
9729593
18.

Phenotype of capillaries in skeletal muscle of nNOS-knockout mice.

Baum O, Vieregge M, Koch P, Gül S, Hahn S, Huber-Abel FA, Pries AR, Hoppeler H.

Am J Physiol Regul Integr Comp Physiol. 2013 Jun 15;304(12):R1175-82. doi: 10.1152/ajpregu.00434.2012. Epub 2013 Apr 10.

PMID:
23576613
20.

Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training.

Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, Hellsten Y.

J Physiol. 2012 Feb 1;590(3):595-606. doi: 10.1113/jphysiol.2011.216135. Epub 2011 Dec 12.

Supplemental Content

Support Center