Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI.

Angelone LM, Ahveninen J, Belliveau JW, Bonmassar G.

IEEE Trans Med Imaging. 2010 Apr;29(4):1029-38. doi: 10.1109/TMI.2010.2040624. Epub 2010 Mar 22.

2.

RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.

Golestanirad L, Kirsch J, Bonmassar G, Downs S, Elahi B, Martin A, Iacono MI, Angelone LM, Keil B, Wald LL, Pilitsis J.

Neuroimage. 2019 Jan 1;184:566-576. doi: 10.1016/j.neuroimage.2018.09.034. Epub 2018 Sep 19.

PMID:
30243973
3.

Parallel transmit pulse design for patients with deep brain stimulation implants.

Eryaman Y, Guerin B, Akgun C, Herraiz JL, Martin A, Torrado-Carvajal A, Malpica N, Hernandez-Tamames JA, Schiavi E, Adalsteinsson E, Wald LL.

Magn Reson Med. 2015 May;73(5):1896-903. doi: 10.1002/mrm.25324. Epub 2014 Jun 19.

4.

Deep brain stimulation lead-contact heating during 3T MRI: single- versus dual-channel pulse generator configurations.

Nazzaro JM, Klemp JA, Brooks WM, Cook-Wiens G, Mayo MS, Van Acker GM 3rd, Lyons KE, Cheney PD.

Int J Neurosci. 2014 Mar;124(3):166-74. doi: 10.3109/00207454.2013.840303. Epub 2013 Oct 8.

PMID:
24000873
5.

MRI induced heating of pacemaker leads: effect of temperature probe positioning and pacemaker placement on lead tip heating and local SAR.

Mattei E, Calcagnini G, Triventi M, Censi F, Bartolini P, Kainz W, Bassen H.

Conf Proc IEEE Eng Med Biol Soc. 2006;1:1889-92.

PMID:
17946486
6.

Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.

McElcheran CE, Yang B, Anderson KJ, Golenstani-Rad L, Graham SJ.

PLoS One. 2015 Aug 3;10(8):e0134379. doi: 10.1371/journal.pone.0134379. eCollection 2015.

7.

Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants.

Golestanirad L, Keil B, Angelone LM, Bonmassar G, Mareyam A, Wald LL.

Magn Reson Med. 2017 Apr;77(4):1701-1712. doi: 10.1002/mrm.26220. Epub 2016 Apr 5.

8.

Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.

Golestanirad L, Angelone LM, Iacono MI, Katnani H, Wald LL, Bonmassar G.

Magn Reson Med. 2017 Oct;78(4):1558-1565. doi: 10.1002/mrm.26535. Epub 2016 Oct 31.

9.
10.

MRI-based multiscale model for electromagnetic analysis in the human head with implanted DBS.

Iacono MI, Makris N, Mainardi L, Angelone LM, Bonmassar G.

Comput Math Methods Med. 2013;2013:694171. doi: 10.1155/2013/694171. Epub 2013 Jul 15.

11.

Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

Gabran SR, Saad JH, Salama MM, Mansour RR.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6485-8. doi: 10.1109/IEMBS.2009.5333588.

PMID:
19964439
12.

Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.

Kazemivalipour E, Keil B, Vali A, Rajan S, Elahi B, Atalar E, Wald LL, Rosenow J, Pilitsis J, Golestanirad L.

Neuroimage. 2019 May 13;199:18-29. doi: 10.1016/j.neuroimage.2019.05.015. [Epub ahead of print]

PMID:
31096058
13.

Electromagnetic and modeling analyses of an implanted device at 3 and 7 Tesla.

Ibrahim TS, Tang L, Kangarlu A, Abraham R.

J Magn Reson Imaging. 2007 Nov;26(5):1362-7.

PMID:
17969135
14.

Magnetic resonance imaging of implanted deep brain stimulators: experience in a large series.

Larson PS, Richardson RM, Starr PA, Martin AJ.

Stereotact Funct Neurosurg. 2008;86(2):92-100. Epub 2007 Dec 12.

PMID:
18073522
15.

Postoperative MRI examinations in patients treated by deep brain stimulation using a non-standard protocol.

Weise LM, Schneider GH, Kupsch A, Haumesser J, Hoffmann KT.

Acta Neurochir (Wien). 2010 Dec;152(12):2021-7. doi: 10.1007/s00701-010-0738-y. Epub 2010 Jul 20.

PMID:
20644967
16.

Intersubject local SAR variation for 7T prostate MR imaging with an eight-channel single-side adapted dipole antenna array.

Ipek O, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA.

Magn Reson Med. 2014 Apr;71(4):1559-67. doi: 10.1002/mrm.24794. Epub 2013 Jun 10.

17.

Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz.

Schönborn F, Poković K, Kuster N.

Bioelectromagnetics. 2004 Jan;25(1):16-26.

PMID:
14696049
18.

On the effect of resistive EEG electrodes and leads during 7 T MRI: simulation and temperature measurement studies.

Angelone LM, Vasios CE, Wiggins G, Purdon PL, Bonmassar G.

Magn Reson Imaging. 2006 Jul;24(6):801-12. Epub 2006 Mar 27.

PMID:
16824975
19.
20.

Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator.

Gorny KR, Presti MF, Goerss SJ, Hwang SC, Jang DP, Kim I, Min HK, Shu Y, Favazza CP, Lee KH, Bernstein MA.

Magn Reson Imaging. 2013 Jun;31(5):783-8. doi: 10.1016/j.mri.2012.11.005. Epub 2012 Dec 7.

Supplemental Content

Support Center