Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Pigmentation pathway evolution after whole-genome duplication in fish.

Braasch I, Brunet F, Volff JN, Schartl M.

Genome Biol Evol. 2009 Nov 25;1:479-93. doi: 10.1093/gbe/evp050.

2.

Evolution of pigment synthesis pathways by gene and genome duplication in fish.

Braasch I, Schartl M, Volff JN.

BMC Evol Biol. 2007 May 11;7:74.

3.

Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.

Braasch I, Salzburger W, Meyer A.

Mol Biol Evol. 2006 Jun;23(6):1192-202. Epub 2006 Mar 17.

PMID:
16547150
4.
5.
6.

From 2R to 3R: evidence for a fish-specific genome duplication (FSGD).

Meyer A, Van de Peer Y.

Bioessays. 2005 Sep;27(9):937-45. Review.

PMID:
16108068
7.

Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.

Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA.

Genome Res. 2009 Aug;19(8):1404-18. doi: 10.1101/gr.086827.108. Epub 2009 May 13.

8.

The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.

Braasch I, Volff JN, Schartl M.

Mol Biol Evol. 2009 Apr;26(4):783-99. doi: 10.1093/molbev/msp015. Epub 2009 Jan 27.

PMID:
19174480
9.
10.

The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?

Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y.

BMC Evol Biol. 2008 Dec 18;8:336. doi: 10.1186/1471-2148-8-336.

11.

Whole-genome duplication and the functional diversification of teleost fish hemoglobins.

Opazo JC, Butts GT, Nery MF, Storz JF, Hoffmann FG.

Mol Biol Evol. 2013 Jan;30(1):140-53. doi: 10.1093/molbev/mss212. Epub 2012 Sep 4.

12.

Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes.

Santini F, Harmon LJ, Carnevale G, Alfaro ME.

BMC Evol Biol. 2009 Aug 8;9:194. doi: 10.1186/1471-2148-9-194.

13.
14.

Whole-genome duplication in teleost fishes and its evolutionary consequences.

Glasauer SM, Neuhauss SC.

Mol Genet Genomics. 2014 Dec;289(6):1045-60. doi: 10.1007/s00438-014-0889-2. Epub 2014 Aug 5. Review.

PMID:
25092473
15.
16.

Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.

Rohmann KN, Deitcher DL, Bass AH.

Mol Biol Evol. 2009 Jul;26(7):1509-21. doi: 10.1093/molbev/msp060. Epub 2009 Mar 25.

17.

Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication.

Guo B, Zou M, Wagner A.

Mol Biol Evol. 2012 Oct;29(10):3005-22. Epub 2012 Apr 4.

PMID:
22490820
18.

Consequences of hoxb1 duplication in teleost fish.

Hurley IA, Scemama JL, Prince VE.

Evol Dev. 2007 Nov-Dec;9(6):540-54.

PMID:
17976051
19.

Fish lateral line innovation: insights into the evolutionary genomic dynamics of a unique mechanosensory organ.

Philip S, Machado JP, Maldonado E, Vasconcelos V, O'Brien SJ, Johnson WE, Antunes A.

Mol Biol Evol. 2012 Dec;29(12):3887-98. doi: 10.1093/molbev/mss194. Epub 2012 Jul 27.

20.

Rapidly evolving fish genomes and teleost diversity.

Ravi V, Venkatesh B.

Curr Opin Genet Dev. 2008 Dec;18(6):544-50. doi: 10.1016/j.gde.2008.11.001. Epub 2008 Dec 16. Review.

PMID:
19095434

Supplemental Content

Support Center