Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.

Mital J, Miller NJ, Fischer ER, Hackstadt T.

Cell Microbiol. 2010 Sep 1;12(9):1235-49. doi: 10.1111/j.1462-5822.2010.01465.x. Epub 2010 Mar 19.

2.

Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.

Weber MM, Bauler LD, Lam J, Hackstadt T.

Infect Immun. 2015 Dec;83(12):4710-8. doi: 10.1128/IAI.01075-15. Epub 2015 Sep 28.

3.

Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.

Grieshaber SS, Grieshaber NA, Hackstadt T.

J Cell Sci. 2003 Sep 15;116(Pt 18):3793-802. Epub 2003 Aug 5.

4.

Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1).

Mital J, Lutter EI, Barger AC, Dooley CA, Hackstadt T.

Biochem Biophys Res Commun. 2015 Jun 26;462(2):165-70. doi: 10.1016/j.bbrc.2015.04.116. Epub 2015 May 2.

5.

Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking.

Richards TS, Knowlton AE, Grieshaber SS.

BMC Microbiol. 2013 Aug 7;13:185. doi: 10.1186/1471-2180-13-185.

6.

The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229.

Rzomp KA, Moorhead AR, Scidmore MA.

Infect Immun. 2006 Sep;74(9):5362-73.

7.

Absence of Specific Chlamydia trachomatis Inclusion Membrane Proteins Triggers Premature Inclusion Membrane Lysis and Host Cell Death.

Weber MM, Lam JL, Dooley CA, Noriea NF, Hansen BT, Hoyt FH, Carmody AB, Sturdevant GL, Hackstadt T.

Cell Rep. 2017 May 16;19(7):1406-1417. doi: 10.1016/j.celrep.2017.04.058.

8.

Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis.

Gauliard E, Ouellette SP, Rueden KJ, Ladant D.

Front Cell Infect Microbiol. 2015 Feb 11;5:13. doi: 10.3389/fcimb.2015.00013. eCollection 2015.

9.
10.

Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins.

Moore ER, Ouellette SP.

Front Cell Infect Microbiol. 2014 Oct 31;4:157. doi: 10.3389/fcimb.2014.00157. eCollection 2014.

11.

A Chlamydia effector recruits CEP170 to reprogram host microtubule organization.

Dumoux M, Menny A, Delacour D, Hayward RD.

J Cell Sci. 2015 Sep 15;128(18):3420-34. doi: 10.1242/jcs.169318. Epub 2015 Jul 28.

12.

The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.

Chen C, Chen D, Sharma J, Cheng W, Zhong Y, Liu K, Jensen J, Shain R, Arulanandam B, Zhong G.

Infect Immun. 2006 Aug;74(8):4826-40.

13.

Development of a Proximity Labeling System to Map the Chlamydia trachomatis Inclusion Membrane.

Rucks EA, Olson MG, Jorgenson LM, Srinivasan RR, Ouellette SP.

Front Cell Infect Microbiol. 2017 Feb 15;7:40. doi: 10.3389/fcimb.2017.00040. eCollection 2017.

14.

A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.

Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD.

Cell Microbiol. 2000 Feb;2(1):35-47.

PMID:
11207561
15.

The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.

Moorhead AR, Rzomp KA, Scidmore MA.

Infect Immun. 2007 Feb;75(2):781-91. Epub 2006 Nov 13.

16.
17.

Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

Mital J, Miller NJ, Dorward DW, Dooley CA, Hackstadt T.

PLoS One. 2013 May 17;8(5):e63426. doi: 10.1371/journal.pone.0063426. Print 2013.

18.

Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities.

Grieshaber SS, Grieshaber NA, Miller N, Hackstadt T.

Traffic. 2006 Aug;7(8):940-9.

19.

The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.

Moore ER, Mead DJ, Dooley CA, Sager J, Hackstadt T.

Microbiology. 2011 Mar;157(Pt 3):830-8. doi: 10.1099/mic.0.045856-0. Epub 2010 Nov 25.

20.

A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion.

Weber MM, Noriea NF, Bauler LD, Lam JL, Sager J, Wesolowski J, Paumet F, Hackstadt T.

J Bacteriol. 2016 Mar 31;198(8):1347-55. doi: 10.1128/JB.00933-15. Print 2016 Apr.

Supplemental Content

Support Center