Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field.

Yu H, Whitfield TW, Harder E, Lamoureux G, Vorobyov I, Anisimov VM, Mackerell AD Jr, Roux B.

J Chem Theory Comput. 2010;6(3):774-786.

2.
3.

Molecular dispersion energy parameters for alkali and halide ions in aqueous solution.

Reiser S, Deublein S, Vrabec J, Hasse H.

J Chem Phys. 2014 Jan 28;140(4):044504. doi: 10.1063/1.4858392.

PMID:
25669552
4.

Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations.

Joung IS, Cheatham TE 3rd.

J Phys Chem B. 2008 Jul 31;112(30):9020-41. doi: 10.1021/jp8001614. Epub 2008 Jul 2.

5.

Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field.

Li H, Ngo V, Da Silva MC, Salahub DR, Callahan K, Roux B, Noskov SY.

J Phys Chem B. 2015 Jul 23;119(29):9401-16. doi: 10.1021/jp510560k. Epub 2015 Feb 4.

6.
7.

A transferable ab initio based force field for aqueous ions.

Tazi S, Molina JJ, Rotenberg B, Turq P, Vuilleumier R, Salanne M.

J Chem Phys. 2012 Mar 21;136(11):114507. doi: 10.1063/1.3692965.

PMID:
22443777
8.

The permeability of endplate channels to monovalent and divalent metal cations.

Adams DJ, Dwyer TM, Hille B.

J Gen Physiol. 1980 May;75(5):493-510.

9.

Clusters of classical water models.

Kiss PT, Baranyai A.

J Chem Phys. 2009 Nov 28;131(20):204310. doi: 10.1063/1.3266838.

PMID:
19947683
11.

Force fields for divalent cations based on single-ion and ion-pair properties.

Mamatkulov S, Fyta M, Netz RR.

J Chem Phys. 2013 Jan 14;138(2):024505. doi: 10.1063/1.4772808.

PMID:
23320702
12.

Sticky ions in biological systems.

Collins KD.

Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5553-7.

13.

Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field.

Luo Y, Jiang W, Yu H, MacKerell AD Jr, Roux B.

Faraday Discuss. 2013;160:135-49; discussion 207-24.

14.

Simulation of Liquid and Supercritical Hydrogen Sulfide and of Alkali Ions in the Pure and Aqueous Liquid.

Orabi EA, Lamoureux G.

J Chem Theory Comput. 2014 Aug 12;10(8):3221-35. doi: 10.1021/ct5002335.

PMID:
26588292
15.

A theoretical study of aqueous solvation of K comparing ab initio, polarizable, and fixed-charge models.

Whitfield TW, Varma S, Harder E, Lamoureux G, Rempe SB, Roux B.

J Chem Theory Comput. 2007;3(6):2068-2082.

16.

Molecular Dynamics Investigation of Alkali Metal Ions in Liquid and Aqueous Ammonia.

Orabi EA, Lamoureux G.

J Chem Theory Comput. 2013 May 14;9(5):2324-38. doi: 10.1021/ct4001069. Epub 2013 Apr 30.

PMID:
26583725
17.

Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.

Yang ZZ, Li X.

J Phys Chem A. 2005 Apr 28;109(16):3517-20.

PMID:
16839014
18.
19.

Competition among Li(+), Na(+), K(+), and Rb(+) monovalent ions for DNA in molecular dynamics simulations using the additive CHARMM36 and Drude polarizable force fields.

Savelyev A, MacKerell AD Jr.

J Phys Chem B. 2015 Mar 26;119(12):4428-40. doi: 10.1021/acs.jpcb.5b00683. Epub 2015 Mar 18.

20.

Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models.

Neyt JC, Wender A, Lachet V, Ghoufi A, Malfreyt P.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11679-90. doi: 10.1039/c3cp50904d.

PMID:
23752676

Supplemental Content

Support Center