Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

Joyner TA, Lukhnova L, Pazilov Y, Temiralyeva G, Hugh-Jones ME, Aikimbayev A, Blackburn JK.

PLoS One. 2010 Mar 9;5(3):e9596. doi: 10.1371/journal.pone.0009596.

2.

Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling.

Blackburn JK, McNyset KM, Curtis A, Hugh-Jones ME.

Am J Trop Med Hyg. 2007 Dec;77(6):1103-10. Erratum in: Am J Trop Med Hyg. 2008 Feb;78(2):358.

PMID:
18165531
3.

Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan.

Mullins J, Lukhnova L, Aikimbayev A, Pazilov Y, Van Ert M, Blackburn JK.

BMC Ecol. 2011 Dec 12;11:32. doi: 10.1186/1472-6785-11-32.

4.

Ecological niche modeling of Bacillus anthracis on three continents: evidence for genetic-ecological divergence?

Mullins JC, Garofolo G, Van Ert M, Fasanella A, Lukhnova L, Hugh-Jones ME, Blackburn JK.

PLoS One. 2013 Aug 19;8(8):e72451. doi: 10.1371/journal.pone.0072451. eCollection 2013.

5.

Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis.

Barro AS, Fegan M, Moloney B, Porter K, Muller J, Warner S, Blackburn JK.

PLoS Negl Trop Dis. 2016 Jun 9;10(6):e0004689. doi: 10.1371/journal.pntd.0004689. eCollection 2016 Jun.

6.

Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan.

Aikembayev AM, Lukhnova L, Temiraliyeva G, Meka-Mechenko T, Pazylov Y, Zakaryan S, Denissov G, Easterday WR, Van Ert MN, Keim P, Francesconi SC, Blackburn JK, Hugh-Jones M, Hadfield T.

Emerg Infect Dis. 2010 May;16(5):789-96. doi: 10.3201/eid1605.091427.

7.

Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan.

Blackburn JK, Matakarimov S, Kozhokeeva S, Tagaeva Z, Bell LK, Kracalik IT, Zhunushov A.

Am J Trop Med Hyg. 2017 Mar;96(3):550-556. doi: 10.4269/ajtmh.16-0758. Epub 2017 Apr 6.

PMID:
28115677
8.

Bacillus anthracis Diversity and Geographic Potential across Nigeria, Cameroon and Chad: Further Support of a Novel West African Lineage.

Blackburn JK, Odugbo MO, Van Ert M, O'Shea B, Mullins J, Perreten V, Maho A, Hugh-Jones M, Hadfield T.

PLoS Negl Trop Dis. 2015 Aug 20;9(8):e0003931. doi: 10.1371/journal.pntd.0003931. eCollection 2015. Erratum in: PLoS Negl Trop Dis. 2015 Sep;9(9):e0004089. Perrenten, Vincent [corrected to Perreten, Vincent].

9.

Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species.

González C, Wang O, Strutz SE, González-Salazar C, Sánchez-Cordero V, Sarkar S.

PLoS Negl Trop Dis. 2010 Jan 19;4(1):e585. doi: 10.1371/journal.pntd.0000585.

10.

Spatial modelling of Bacillus anthracis ecological niche in Zimbabwe.

Chikerema SM, Murwira A, Matope G, Pfukenyi DM.

Prev Vet Med. 2013 Aug 1;111(1-2):25-30. doi: 10.1016/j.prevetmed.2013.04.006. Epub 2013 May 29.

PMID:
23726015
11.

Predicting Disease Risk, Identifying Stakeholders, and Informing Control Strategies: A Case Study of Anthrax in Montana.

Morris LR, Blackburn JK.

Ecohealth. 2016 Jun;13(2):262-73. doi: 10.1007/s10393-016-1119-7. Epub 2016 May 11.

PMID:
27169560
12.

Future carbon balance of China's forests under climate change and increasing CO2.

Ju WM, Chen JM, Harvey D, Wang S.

J Environ Manage. 2007 Nov;85(3):538-62. Epub 2006 Dec 21.

PMID:
17187919
13.

Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios.

Garza M, Feria Arroyo TP, Casillas EA, Sanchez-Cordero V, Rivaldi CL, Sarkar S.

PLoS Negl Trop Dis. 2014 May 15;8(5):e2818. doi: 10.1371/journal.pntd.0002818. eCollection 2014 May.

14.

Estimating future burned areas under changing climate in the EU-Mediterranean countries.

Amatulli G, Camia A, San-Miguel-Ayanz J.

Sci Total Environ. 2013 Apr 15;450-451:209-22. doi: 10.1016/j.scitotenv.2013.02.014. Epub 2013 Mar 8.

PMID:
23500819
15.

Bacillus anthracis diversity in Kruger National Park.

Smith KL, DeVos V, Bryden H, Price LB, Hugh-Jones ME, Keim P.

J Clin Microbiol. 2000 Oct;38(10):3780-4.

16.

Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years.

Keim P, Grunow R, Vipond R, Grass G, Hoffmaster A, Birdsell DN, Klee SR, Pullan S, Antwerpen M, Bayer BN, Latham J, Wiggins K, Hepp C, Pearson T, Brooks T, Sahl J, Wagner DM.

EBioMedicine. 2015 Oct 6;2(11):1613-8. doi: 10.1016/j.ebiom.2015.10.004. eCollection 2015 Nov.

17.
18.

Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae).

Ni WL, Li ZH, Chen HJ, Wan FH, Qu WW, Zhang Z, Kriticos DJ.

Bull Entomol Res. 2012 Apr;102(2):173-83. doi: 10.1017/S0007485311000538. Epub 2011 Oct 10.

PMID:
22008216
19.

[Current malaria situation in the Republic of Kazakhstan].

Bismil'din FB, Shapieva ZhZh, Anpilova EN.

Med Parazitol (Mosk). 2001 Jan-Mar;(1):24-33. Russian.

PMID:
11548308
20.

The ecology of anthrax spores: tough but not invincible.

Dragon DC, Rennie RP.

Can Vet J. 1995 May;36(5):295-301. Review.

Supplemental Content

Support Center