Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Missing genes in the annotation of prokaryotic genomes.

Warren AS, Archuleta J, Feng WC, Setubal JC.

BMC Bioinformatics. 2010 Mar 15;11:131. doi: 10.1186/1471-2105-11-131.

2.

Large-scale prokaryotic gene prediction and comparison to genome annotation.

Nielsen P, Krogh A.

Bioinformatics. 2005 Dec 15;21(24):4322-9. Epub 2005 Oct 25.

PMID:
16249266
3.

Finding prokaryotic genes by the 'frame-by-frame' algorithm: targeting gene starts and overlapping genes.

Shmatkov AM, Melikyan AA, Chernousko FL, Borodovsky M.

Bioinformatics. 1999 Nov;15(11):874-86.

PMID:
10743554
4.

EasyGene--a prokaryotic gene finder that ranks ORFs by statistical significance.

Larsen TS, Krogh A.

BMC Bioinformatics. 2003 Jun 3;4:21. Epub 2003 Jun 3.

5.

Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes.

Bocs S, Danchin A, Médigue C.

BMC Bioinformatics. 2002;3:5. Epub 2002 Feb 5.

6.

GeneLook: a novel ab initio gene identification system suitable for automated annotation of prokaryotic sequences.

Nishi T, Ikemura T, Kanaya S.

Gene. 2005 Feb 14;346:115-25. Epub 2005 Jan 26.

PMID:
15716020
7.

Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction.

Ederveen TH, Overmars L, van Hijum SA.

PLoS One. 2013 May 10;8(5):e63523. doi: 10.1371/journal.pone.0063523. Print 2013.

8.

MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes.

Zhu H, Hu GQ, Yang YF, Wang J, She ZS.

BMC Bioinformatics. 2007 Mar 16;8:97.

9.

Synergistic use of plant-prokaryote comparative genomics for functional annotations.

Gerdes S, El Yacoubi B, Bailly M, Blaby IK, Blaby-Haas CE, Jeanguenin L, Lara-Núñez A, Pribat A, Waller JC, Wilke A, Overbeek R, Hanson AD, de Crécy-Lagard V.

BMC Genomics. 2011 Jun 15;12 Suppl 1:S2. doi: 10.1186/1471-2164-12-S1-S2.

10.
11.

BAGEL: a web-based bacteriocin genome mining tool.

de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP.

Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W273-9.

12.

High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs.

Livny J, Teonadi H, Livny M, Waldor MK.

PLoS One. 2008 Sep 12;3(9):e3197. doi: 10.1371/journal.pone.0003197. Erratum in: PLoS ONE. 2008;3(11). doi: 10.1371/annotation/a03e1870-1dd7-4c16-8c46-2268eeb2a50a.

13.

FusionDB: a database for in-depth analysis of prokaryotic gene fusion events.

Suhre K, Claverie JM.

Nucleic Acids Res. 2004 Jan 1;32(Database issue):D273-6.

14.
15.

Saccharomyces cerevisiae: gene annotation and genome variability, state of the art through comparative genomics.

Louis E.

Methods Mol Biol. 2011;759:31-40. doi: 10.1007/978-1-61779-173-4_2.

PMID:
21863479
16.
17.

Exploration and grading of possible genes from 183 bacterial strains by a common protocol to identification of new genes: Gene Trek in Prokaryote Space (GTPS).

Kosuge T, Abe T, Okido T, Tanaka N, Hirahata M, Maruyama Y, Mashima J, Tomiki A, Kurokawa M, Himeno R, Fukuchi S, Miyazaki S, Gojobori T, Tateno Y, Sugawara H.

DNA Res. 2006 Dec 31;13(6):245-54. Epub 2006 Dec 13.

PMID:
17166861
18.

Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory.

Azad RK, Borodovsky M.

Brief Bioinform. 2004 Jun;5(2):118-30.

PMID:
15260893
19.

Multivariate entropy distance method for prokaryotic gene identification.

Ouyang Z, Zhu H, Wang J, She ZS.

J Bioinform Comput Biol. 2004 Jun;2(2):353-73.

PMID:
15297987
20.

Supplemental Content

Support Center