Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 173

1.

Chaotic mixing in microchannels via low frequency switching transverse electroosmotic flow generated on integrated microelectrodes.

Song H, Cai Z, Noh HM, Bennett DJ.

Lab Chip. 2010 Mar 21;10(6):734-40. doi: 10.1039/b918213f. Epub 2010 Jan 5.

PMID:
20221561
2.

A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency.

Fu LM, Yang RJ, Lin CH, Chien YS.

Electrophoresis. 2005 May;26(9):1814-24.

PMID:
15754383
3.

Design and simulation of the micromixer with chaotic advection in twisted microchannels.

Jen CP, Wu CY, Lin YC, Wu CY.

Lab Chip. 2003 May;3(2):77-81. Epub 2003 Apr 17.

PMID:
15100786
4.

DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.

Ng WY, Goh S, Lam YC, Yang C, Rodríguez I.

Lab Chip. 2009 Mar 21;9(6):802-9. doi: 10.1039/b813639d. Epub 2008 Nov 28.

PMID:
19255662
5.

Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.

Chao K, Chen B, Wu J.

Biomed Microdevices. 2010 Dec;12(6):959-66. doi: 10.1007/s10544-010-9450-1.

PMID:
20668948
6.

AC electroosmotic micromixer for chemical processing in a microchannel.

Sasaki N, Kitamori T, Kim HB.

Lab Chip. 2006 Apr;6(4):550-4. Epub 2006 Feb 14.

PMID:
16572218
7.

Microfluidic T-form mixer utilizing switching electroosmotic flow.

Lin CH, Fu LM, Chien YS.

Anal Chem. 2004 Sep 15;76(18):5265-72.

PMID:
15362882
8.

Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.

Lin JL, Lee KH, Lee GB.

Electrophoresis. 2005 Dec;26(24):4605-15.

PMID:
16358251
9.

Electrokinetically-driven flow mixing in microchannels with wavy surface.

Chen CK, Cho CC.

J Colloid Interface Sci. 2007 Aug 15;312(2):470-80. Epub 2007 Mar 24.

PMID:
17442332
10.

Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.

Cho CC, Chen CL, Chen CK.

Electrophoresis. 2012 Mar;33(5):743-50. doi: 10.1002/elps.201100496.

PMID:
22522530
11.

Electroosmotic flow mixing in zigzag microchannels.

Chen JK, Yang RJ.

Electrophoresis. 2007 Mar;28(6):975-83.

PMID:
17300132
12.

Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel.

Huang MZ, Yang RJ, Tai CH, Tsai CH, Fu LM.

Biomed Microdevices. 2006 Dec;8(4):309-15.

PMID:
17003961
13.

Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.

Chang ST, Beaumont E, Petsev DN, Velev OD.

Lab Chip. 2008 Jan;8(1):117-24. Epub 2007 Nov 8.

PMID:
18094769
14.

A rapid DNA digestion system.

Fu LM, Lin CH.

Biomed Microdevices. 2007 Apr;9(2):277-86.

PMID:
17195107
15.

Induced pressure pumping in polymer microchannels via field-effect flow control.

Sniadecki NJ, Lee CS, Sivanesan P, DeVoe DL.

Anal Chem. 2004 Apr 1;76(7):1942-7.

PMID:
15053655
16.

Effect of zeta potential on the performance of a ring-type electroosmotic mixer.

Kim TA, Koo KH, Kim YJ.

J Nanosci Nanotechnol. 2009 Dec;9(12):7303-6.

PMID:
19908777
17.
18.

Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel.

Chen JK, Weng CN, Yang RJ.

Lab Chip. 2009 May 7;9(9):1267-73. doi: 10.1039/b819547a. Epub 2009 Feb 3.

PMID:
19370247
19.
20.

Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.

Hu Y, Werner C, Li D.

J Colloid Interface Sci. 2004 Dec 15;280(2):527-36.

PMID:
15533426

Supplemental Content

Support Center