Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Wave-front interpretation with Zernike polynomials.

Wang JY, Silva DE.

Appl Opt. 1980 May 1;19(9):1510-8. doi: 10.1364/AO.19.001510.

PMID:
20221066
2.

Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.

Díaz JA, Mahajan VN.

Appl Opt. 2013 Feb 20;52(6):1136-47. doi: 10.1364/AO.52.001136.

PMID:
23434982
3.

Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape.

Upton R, Ellerbroek B.

Opt Lett. 2004 Dec 15;29(24):2840-2.

PMID:
15645798
4.

Orthonormal polynomials in wavefront analysis: error analysis.

Dai GM, Mahajan VN.

Appl Opt. 2008 Jul 1;47(19):3433-45.

PMID:
18594590
5.

Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.

Hou X, Wu F, Yang L, Chen Q.

Appl Opt. 2006 Dec 10;45(35):8893-901.

PMID:
17119589
6.
7.

Orthonormal polynomials for hexagonal pupils.

Mahajan VN, Dai GM.

Opt Lett. 2006 Aug 15;31(16):2462-4. Erratum in: Opt Lett. 2008 May 15;33(10):1077.

PMID:
16880856
8.

Orthonormal polynomials in wavefront analysis: analytical solution.

Mahajan VN, Dai GM.

J Opt Soc Am A Opt Image Sci Vis. 2007 Sep;24(9):2994-3016. Erratum in: J Opt Soc Am A Opt Image Sci Vis. 2012 Aug 1;29(8):1673-4.

PMID:
17767271
9.

Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.

Mahajan VN.

Appl Opt. 1995 Dec 1;34(34):8057-9. doi: 10.1364/AO.34.008057.

PMID:
21068908
10.

Analysis of Seidel aberration by use of the discrete wavelet transform.

Chang RS, Sheu JY, Lin CH.

Appl Opt. 2002 May 1;41(13):2408-13.

PMID:
12009149
11.

Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

Ye J, Gao Z, Wang S, Cheng J, Wang W, Sun W.

J Opt Soc Am A Opt Image Sci Vis. 2014 Oct 1;31(10):2304-11. doi: 10.1364/JOSAA.31.002304.

PMID:
25401259
12.

Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment.

Díaz JA, Mahajan VN.

Appl Opt. 2013 Aug 20;52(24):5962-4. doi: 10.1364/AO.52.005962.

PMID:
24084998
13.

Zernike annular polynomials and atmospheric turbulence.

Dai GM, Mahajan VN.

J Opt Soc Am A Opt Image Sci Vis. 2007 Jan;24(1):139-55.

PMID:
17164852
14.

Strehl ratio and amplitude-weighted generalized orthonormal Zernike-based polynomials.

Mafusire C, Krüger TP.

Appl Opt. 2017 Mar 10;56(8):2336-2345. doi: 10.1364/AO.56.002336.

PMID:
28375280
15.

Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes.

Swantner W, Chow WW.

Appl Opt. 1994 Apr 1;33(10):1832-7. doi: 10.1364/AO.33.001832.

PMID:
20885515
16.

Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.

Mahajan VN, Aftab M.

Appl Opt. 2010 Nov 20;49(33):6489-501. doi: 10.1364/AO.49.006489.

PMID:
21102675
17.
18.
19.

Algorithm for computation of Zernike polynomials expansion coefficients.

Prata A Jr, Rusch WV.

Appl Opt. 1989 Feb 15;28(4):749-54. doi: 10.1364/AO.28.000749.

PMID:
20548554
20.

Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.

Mahajan VN.

Appl Opt. 2012 Jun 20;51(18):4087-91. doi: 10.1364/AO.51.004087.

PMID:
22722284

Supplemental Content

Support Center