Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93


Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories.

Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, Beemster GT, Meyer RC, Messerli G, Gronlund JT, Perkovic J, Wigmore E, May S, Bevan MW, Meyer C, Rubio-Díaz S, Weigel D, Micol JL, Buchanan-Wollaston V, Fiorani F, Walsh S, Rinn B, Gruissem W, Hilson P, Hennig L, Willmitzer L, Granier C.

Plant Physiol. 2010 Apr;152(4):2142-57. doi: 10.1104/pp.109.148338. Epub 2010 Mar 3.


Phenotyping the development of leaf area in Arabidopsis thaliana.

Cookson SJ, Turc O, Massonnet C, Granier C.

Methods Mol Biol. 2010;655:89-103. doi: 10.1007/978-1-60761-765-5_7.


PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit.

Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, Tardieu F.

New Phytol. 2006;169(3):623-35.


Increased leaf size: different means to an end.

Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, Van Daele T, De Milde L, Weigel D, Kamiya Y, Stitt M, Beemster GT, Inzé D.

Plant Physiol. 2010 Jul;153(3):1261-79. doi: 10.1104/pp.110.156018. Epub 2010 May 11.


Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.

Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P, Stitt M, Williams M, Muetzelfeldt R, Halliday KJ, Millar AJ.

Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):E4127-36. doi: 10.1073/pnas.1410238111. Epub 2014 Sep 2. Erratum in: Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2556.


A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.

Qin J, Ma X, Yi Z, Tang Z, Meng Y.

Plant Biol (Stuttg). 2016 Mar;18(2):197-205. doi: 10.1111/plb.12373. Epub 2015 Aug 4.


Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

Kazachkova Y, Batushansky A, Cisneros A, Tel-Zur N, Fait A, Barak S.

Plant Physiol. 2013 Jul;162(3):1583-98. doi: 10.1104/pp.113.217844. Epub 2013 Jun 4.


Lessons from a search for leaf mutants in Arabidopsis thaliana.

Pérez-Pérez JM, Candela H, Robles P, Quesada V, Ponce MR, Micol JL.

Int J Dev Biol. 2009;53(8-10):1623-34. doi: 10.1387/ijdb.072534jp.


RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions.

Champigny MJ, Sung WW, Catana V, Salwan R, Summers PS, Dudley SA, Provart NJ, Cameron RK, Golding GB, Weretilnyk EA.

BMC Genomics. 2013 Aug 28;14:578. doi: 10.1186/1471-2164-14-578.


ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves.

Sun Y, Zhou Q, Zhang W, Fu Y, Huang H.

Planta. 2002 Mar;214(5):694-702. Epub 2001 Nov 10.


Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes.

Delgado D, Alonso-Blanco C, Fenoll C, Mena M.

Ann Bot. 2011 Jun;107(8):1247-58. doi: 10.1093/aob/mcr060. Epub 2011 Mar 28.


A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis.

Shirzadian-Khorramabad R, Jing HC, Everts GE, Schippers JH, Hille J, Dijkwel PP.

BMC Plant Biol. 2010 Apr 29;10:80. doi: 10.1186/1471-2229-10-80.


Leaf responses to mild drought stress in natural variants of Arabidopsis.

Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D.

Plant Physiol. 2015 Mar;167(3):800-16. doi: 10.1104/pp.114.254284. Epub 2015 Jan 20. Erratum in: Plant Physiol. 2015 Jul;168(3):1180.


Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes.

Pucholt P, Sjödin P, Weih M, Rönnberg-Wästljung AC, Berlin S.

BMC Plant Biol. 2015 Oct 12;15:244. doi: 10.1186/s12870-015-0630-2. Erratum in: BMC Plant Biol. 2015;15:285.


Metabolite profiling for plant functional genomics.

Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L.

Nat Biotechnol. 2000 Nov;18(11):1157-61. Erratum in: Nat Biotechnol 2000 Feb;19(2):173.


Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components.

Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson S.

BMC Plant Biol. 2012 Jan 11;12:6. doi: 10.1186/1471-2229-12-6.


High-resolution time-resolved imaging of in vitro Arabidopsis rosette growth.

Dhondt S, Gonzalez N, Blomme J, De Milde L, Van Daele T, Van Akoleyen D, Storme V, Coppens F, T S Beemster G, Inzé D.

Plant J. 2014 Oct;80(1):172-84. doi: 10.1111/tpj.12610. Epub 2014 Aug 25.


Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana.

Chiang MH, Shen HL, Cheng WH.

Plant Sci. 2015 Jul;236:260-71. doi: 10.1016/j.plantsci.2015.04.009. Epub 2015 Apr 23.


Supplemental Content

Support Center