Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Thin-wedge-shaped cell for highly absorbent liquids.

Tyler IL, Taylor G, Querry MR.

Appl Opt. 1978 Mar 15;17(6):960-3. doi: 10.1364/AO.17.000960.

PMID:
20197907
2.

Wedge shaped cell for highly absorbent liquids: infrared optical constants of water.

Wieliczka DM, Weng S, Querry MR.

Appl Opt. 1989 May 1;28(9):1714-9. doi: 10.1364/AO.28.001714.

PMID:
20548731
3.

Use of a wedge cuvette in thin layer photometry and its application to oximetry.

Spaan JA, Garred LJ, van de Borne P.

Pflugers Arch. 1977;372(3):279-83.

PMID:
564052
4.

Laser measurement of the spectral extinction coefficients of fluorescent, highly absorbing liquids.

Hoge FE.

Appl Opt. 1982 May 15;21(10):1725-9. doi: 10.1364/AO.21.001725.

PMID:
20389929
5.
6.

Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product designs.

Fader M, Cottenden A, Getliffe K, Gage H, Clarke-O'Neill S, Jamieson K, Green N, Williams P, Brooks R, Malone-Lee J.

Health Technol Assess. 2008 Jul;12(29):iii-iv, ix-185. Review.

7.

Recent advances in absorbent products for the incontinent patient with burns.

Biesecker JE, Edlich RF, Thomas HL Jr, Steers WD.

J Burn Care Rehabil. 1995 Mar-Apr;16(2 Pt 1):146-53; discussion 145.

PMID:
7775510
8.

Optical refractometry based on Fresnel diffraction from a phase wedge.

Tavassoly MT, Saber A.

Opt Lett. 2010 Nov 1;35(21):3679-81. doi: 10.1364/OL.35.003679.

PMID:
21042389
9.

Liquids confined in wedge shaped pores: nonuniform pressure induced by pore geometry.

Cámara LG, Bresme F.

J Chem Phys. 2004 Jun 22;120(24):11355-8.

PMID:
15268165
10.

Computer simulation of macroion layering in a wedge film.

Trokhymchuk A, Henderson D, Nikolov A, Wasan DT.

Langmuir. 2005 Oct 25;21(22):10240-50.

PMID:
16229551
11.

Laser measurement of extinction coefficients of highly absorbing liquids.

Hoge FE, Kincaid JS.

Appl Opt. 1980 Apr 1;19(7):1143-50. doi: 10.1364/AO.19.001143.

PMID:
20220999
12.

Design and comparison of wedge shaped midline block with rectangular block used in early stage cervical cancers.

Avadhani JS, Deshpande DD, Pradhan AS, Viswanathan PS, Shrivastava SK, Dinshaw KA.

Strahlenther Onkol. 1996 Dec;172(12):676-80.

PMID:
8972752
13.

Scientific basis for the selection of absorbent underpads that remain securely attached to underlying bed or chair.

Edlich RF, Winters KL, Long WB 3rd, Gubler KD.

J Long Term Eff Med Implants. 2006;16(1):29-40.

PMID:
16566743
14.

Recent progress in the determination of solid surface tensions from contact angles.

Tavana H, Neumann AW.

Adv Colloid Interface Sci. 2007 Mar 28;132(1):1-32. Epub 2007 Jan 11.

PMID:
17222380
15.

Aqueous microgels modified by wedge-shaped amphiphilic molecules: hydrophilic microcontainers with hydrophobic nanodomains.

Cheng C, Zhu X, Pich A, Möller M.

Langmuir. 2010 Apr 6;26(7):4709-16. doi: 10.1021/la903588p.

PMID:
19961194
16.

Capillary rise of liquids over a microstructured solid surface.

Liu W, Li Y, Cai Y, Sekulic DP.

Langmuir. 2011 Dec 6;27(23):14260-6. doi: 10.1021/la2033884. Epub 2011 Nov 9.

PMID:
22022949
17.

The effect of the anion on the physical properties of trihalide-based N,N-dialkylimidazolium ionic liquids.

Bagno A, Butts C, Chiappe C, D'Amico F, Lord JC, Pieraccini D, Rastrelli F.

Org Biomol Chem. 2005 May 7;3(9):1624-30. Epub 2005 Apr 7.

PMID:
15858642
18.

Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis.

Shi F, Zhang Q, Li D, Deng Y.

Chemistry. 2005 Sep 5;11(18):5279-88.

PMID:
15997434
19.
20.

Dynamic surface tension measurements with submillisecond resolution using a capillary-jet instability technique.

Alakoç U, Megaridis CM, McNallan M, Wallace DB.

J Colloid Interface Sci. 2004 Aug 15;276(2):379-91.

PMID:
15271566

Supplemental Content

Support Center