Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38

1.

Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response.

Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen JS.

Mol Cell Proteomics. 2010 Jun;9(6):1314-23. doi: 10.1074/mcp.M900616-MCP200. Epub 2010 Feb 16.

3.

Identification of carboxyl-terminal MCM3 phosphorylation sites using polyreactive phosphospecific antibodies.

Shi Y, Dodson GE, Mukhopadhyay PS, Shanware NP, Trinh AT, Tibbetts RS.

J Biol Chem. 2007 Mar 23;282(12):9236-43. Epub 2007 Jan 23.

4.

Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics.

Wiśniewski JR, Zougman A, Krüger S, Ziółkowski P, Pudełko M, Bebenek M, Mann M.

Proteins. 2008 Nov 15;73(3):710-8. doi: 10.1002/prot.22104.

PMID:
18491381
5.

Investigating the dynamic nature of the interactions between nuclear proteins and histones upon DNA damage using an immobilized peptide chemical proteomics approach.

Dirksen EH, Pinkse MW, Rijkers DT, Cloos J, Liskamp RM, Slijper M, Heck AJ.

J Proteome Res. 2006 Sep;5(9):2380-8.

PMID:
16944950
7.

Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.

Wu CJ, Chen YW, Tai JH, Chen SH.

J Proteome Res. 2011 Mar 4;10(3):1088-97. doi: 10.1021/pr100864b. Epub 2011 Feb 14.

PMID:
21210654
8.

Identification of sequences that target BRCA1 to nuclear foci following alkylative DNA damage.

Au WW, Henderson BR.

Cell Signal. 2007 Sep;19(9):1879-92. Epub 2007 May 1.

PMID:
17531442
9.

Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications.

Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW.

Mol Cell Proteomics. 2002 Oct;1(10):791-804.

10.

Phosphoproteome sequence analysis and significance: mining association patterns around phosphorylation sites utilizing MAPRes.

Ahmad I, Mehmood A, Khurshid A, Qazi WM, Hoessli DC, Walker-Nasir E, Shakoori AR; Nasir-ud-Din..

J Cell Biochem. 2009 Sep 1;108(1):64-74. doi: 10.1002/jcb.22220.

PMID:
19544398
11.

Large-scale proteomics analysis of the human kinome.

Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Kéri G, Mann M, Daub H.

Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.

12.

Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage.

Post S, Weng YC, Cimprich K, Chen LB, Xu Y, Lee EY.

Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13102-7. Epub 2001 Oct 30.

14.

NFBD1/KIAA0170 is a chromatin-associated protein involved in DNA damage signaling pathways.

Xu X, Stern DF.

J Biol Chem. 2003 Mar 7;278(10):8795-803. Epub 2002 Dec 23.

15.

Signaling to p53: breaking the posttranslational modification code.

Appella E, Anderson CW.

Pathol Biol (Paris). 2000 Apr;48(3):227-45. Review.

PMID:
10858956
16.

A quantitative results-driven approach to analyzing multisite protein phosphorylation: the phosphate-dependent phosphorylation profile of the transcription factor Pho4.

Zappacosta F, Collingwood TS, Huddleston MJ, Annan RS.

Mol Cell Proteomics. 2006 Nov;5(11):2019-30. Epub 2006 Jul 6.

17.

Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network.

Kumar R, Kumar A, Subba P, Gayali S, Barua P, Chakraborty S, Chakraborty N.

J Proteomics. 2014 Jun 13;105:58-73. doi: 10.1016/j.jprot.2014.04.002. Epub 2014 Apr 18.

PMID:
24747304
18.

In silico studies of potential phosphoresidues in the human nucleophosmin/B23: its kinases and related biological processes.

Ramos-Echazábal G, Chinea G, García-Fernández R, Pons T.

J Cell Biochem. 2012 Jul;113(7):2364-74. doi: 10.1002/jcb.24108.

PMID:
22573554
19.

Mass spectrometry-based quantification of the cellular response to methyl methanesulfonate treatment in human cells.

Aslanian A, Yates JR 3rd, Hunter T.

DNA Repair (Amst). 2014 Mar;15:29-38. doi: 10.1016/j.dnarep.2013.12.007. Epub 2014 Jan 22.

20.

Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences.

Lee TY, Lin ZQ, Hsieh SJ, Bretaña NA, Lu CT.

Bioinformatics. 2011 Jul 1;27(13):1780-7. doi: 10.1093/bioinformatics/btr291. Epub 2011 May 6.

PMID:
21551145

Supplemental Content

Support Center