Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts.

Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, Wu N, Castranova V.

J Toxicol Environ Health A. 2010;73(5):410-22. doi: 10.1080/15287390903486550.

PMID:
20155582
2.

Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies.

Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, Rojanasakul Y.

Part Fibre Toxicol. 2010 Oct 19;7:31. doi: 10.1186/1743-8977-7-31.

3.

Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice.

Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P.

Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L698-708. Epub 2005 Jun 10.

4.

Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model.

Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, Shvedova AA, Castranova V.

Am J Physiol Lung Cell Mol Physiol. 2008 Jan;294(1):L87-97. Epub 2007 Nov 16.

5.

Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells.

Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE, Shvedova AA.

J Toxicol Environ Health A. 2007 Dec;70(24):2071-9.

PMID:
18049996
6.

Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes.

Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V.

Toxicology. 2010 Mar 10;269(2-3):136-47. doi: 10.1016/j.tox.2009.10.017. Epub 2009 Oct 24.

PMID:
19857541
7.

Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis.

Mishra A, Stueckle TA, Mercer RR, Derk R, Rojanasakul Y, Castranova V, Wang L.

Am J Physiol Lung Cell Mol Physiol. 2015 Oct 15;309(8):L821-33. doi: 10.1152/ajplung.00002.2015. Epub 2015 Aug 21.

8.

Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes.

Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, Kagan VE.

Toxicol Appl Pharmacol. 2008 Sep 1;231(2):235-40. doi: 10.1016/j.taap.2008.04.018. Epub 2008 Apr 30.

PMID:
18534653
9.

Effect of fiber length on carbon nanotube-induced fibrogenesis.

Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, Derk R, Stueckle TA, Porter DW, Sager T, Gou H, Dinu CZ, Wu N, Mercer RR, Rojanasakul Y.

Int J Mol Sci. 2014 Apr 29;15(5):7444-61. doi: 10.3390/ijms15057444.

10.

A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice.

Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, Hong JT, Choi K.

Arch Toxicol. 2011 Sep;85(9):1121-31. doi: 10.1007/s00204-011-0655-8. Epub 2011 Apr 7.

PMID:
21472445
11.

TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation.

Dong J, Ma Q.

Nanotoxicology. 2017 Feb;11(1):41-51. doi: 10.1080/17435390.2016.1262919. Epub 2016 Dec 9.

PMID:
27852133
12.

Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay.

Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S.

Part Fibre Toxicol. 2013 Oct 10;10:52. doi: 10.1186/1743-8977-10-52.

13.

Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis.

Addis-Lieser E, Köhl J, Chiaramonte MG.

J Immunol. 2005 Aug 1;175(3):1894-902.

14.

Investigation of the pulmonary bioactivity of double-walled carbon nanotubes.

Sager TM, Wolfarth MW, Battelli LA, Leonard SS, Andrew M, Steinbach T, Endo M, Tsuruoka S, Porter DW, Castranova V.

J Toxicol Environ Health A. 2013;76(15):922-36. doi: 10.1080/15287394.2013.825571.

PMID:
24156695
15.

SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro.

Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ.

Toxicol Appl Pharmacol. 2009 Feb 1;234(3):378-90. doi: 10.1016/j.taap.2008.10.015. Epub 2008 Nov 7.

PMID:
19041333
16.

Single-walled carbon nanotubes can induce pulmonary injury in mouse model.

Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC.

Nano Lett. 2008 Feb;8(2):437-45. doi: 10.1021/nl0723634. Epub 2008 Jan 29.

PMID:
18225938
17.

Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.

Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA.

Toxicology. 2009 Mar 29;257(3):161-71. doi: 10.1016/j.tox.2008.12.023. Epub 2008 Dec 30.

PMID:
19150385
18.

Epithelial-mesenchymal transition contributes to SWCNT-induced pulmonary fibrosis.

Chang CC, Tsai ML, Huang HC, Chen CY, Dai SX.

Nanotoxicology. 2012 Sep;6(6):600-10. doi: 10.3109/17435390.2011.594913. Epub 2011 Jun 28.

PMID:
21711127
19.

A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.

Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL.

Crit Rev Toxicol. 2006 Mar;36(3):189-217. Review.

PMID:
16686422
20.

Alternative estimation of human exposure of single-walled carbon nanotubes using three-dimensional tissue-engineered human lung.

Stoker E, Purser F, Kwon S, Park YB, Lee JS.

Int J Toxicol. 2008 Nov;27(6):441-8. doi: 10.1080/10915810802552138.

PMID:
19482823

Supplemental Content

Support Center