Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces.

Shandilya SM, Nalam MN, Nalivaika EA, Gross PJ, Valesano JC, Shindo K, Li M, Munson M, Royer WE, Harjes E, Kono T, Matsuo H, Harris RS, Somasundaran M, Schiffer CA.

Structure. 2010 Jan 13;18(1):28-38. doi: 10.1016/j.str.2009.10.016.

2.

APOBEC2 is a monomer in solution: implications for APOBEC3G models.

Krzysiak TC, Jung J, Thompson J, Baker D, Gronenborn AM.

Biochemistry. 2012 Mar 6;51(9):2008-17. doi: 10.1021/bi300021s. Epub 2012 Feb 27.

3.

Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications.

Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS.

Nature. 2008 Nov 6;456(7218):121-4. doi: 10.1038/nature07357. Epub 2008 Oct 12.

4.

An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model.

Harjes E, Gross PJ, Chen KM, Lu Y, Shindo K, Nowarski R, Gross JD, Kotler M, Harris RS, Matsuo H.

J Mol Biol. 2009 Jun 26;389(5):819-32. doi: 10.1016/j.jmb.2009.04.031. Epub 2009 Apr 21.

5.

Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G.

Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, Matsuo H.

Nature. 2008 Mar 6;452(7183):116-9. doi: 10.1038/nature06638. Epub 2008 Feb 20.

PMID:
18288108
6.

Model structure of human APOBEC3G.

Zhang KL, Mangeat B, Ortiz M, Zoete V, Trono D, Telenti A, Michielin O.

PLoS One. 2007 Apr 18;2(4):e378.

7.

Structure and real-time monitoring of the enzymatic reaction of APOBEC3G which is involved in anti-HIV activity.

Furukawa A, Nagata T, Matsugami A, Habu Y, Sugiyama R, Hayashi F, Kobayashi N, Yokoyama S, Takaku H, Katahira M.

Nucleic Acids Symp Ser (Oxf). 2009;(53):87-8. doi: 10.1093/nass/nrp044.

PMID:
19749273
8.

NMR assignments and the identification of the secondary structure of the anti-retroviral cytidine deaminase.

Furukawa A, Nagata T, Habu Y, Sugiyama R, Hayashi F, Yokoyama S, Takaku H, Katahira M.

Nucleic Acids Symp Ser (Oxf). 2008;(52):183-4. doi: 10.1093/nass/nrn093.

PMID:
18776314
9.

Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA.

Lu X, Zhang T, Xu Z, Liu S, Zhao B, Lan W, Wang C, Ding J, Cao C.

J Biol Chem. 2015 Feb 13;290(7):4010-21. doi: 10.1074/jbc.M114.624262. Epub 2014 Dec 25.

10.

Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G.

Chen KM, Martemyanova N, Lu Y, Shindo K, Matsuo H, Harris RS.

FEBS Lett. 2007 Oct 2;581(24):4761-6. Epub 2007 Sep 7.

11.

Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.

Furukawa A, Nagata T, Matsugami A, Habu Y, Sugiyama R, Hayashi F, Kobayashi N, Yokoyama S, Takaku H, Katahira M.

EMBO J. 2009 Feb 18;28(4):440-51. doi: 10.1038/emboj.2008.290. Epub 2009 Jan 15.

12.

Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition.

Bulliard Y, Turelli P, Röhrig UF, Zoete V, Mangeat B, Michielin O, Trono D.

J Virol. 2009 Dec;83(23):12611-21. doi: 10.1128/JVI.01491-09. Epub 2009 Sep 23.

13.

Rationalisation of the differences between APOBEC3G structures from crystallography and NMR studies by molecular dynamics simulations.

Autore F, Bergeron JR, Malim MH, Fraternali F, Huthoff H.

PLoS One. 2010 Jul 12;5(7):e11515. doi: 10.1371/journal.pone.0011515.

14.

Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination.

Kamba K, Nagata T, Katahira M.

PLoS One. 2015 Apr 13;10(4):e0124142. doi: 10.1371/journal.pone.0124142. eCollection 2015.

15.
16.

Functional analysis of the two cytidine deaminase domains in APOBEC3G.

Li X, Ma J, Zhang Q, Zhou J, Yin X, Zhai C, You X, Yu L, Guo F, Zhao L, Li Z, Zeng Y, Cen S.

Virology. 2011 Jun 5;414(2):130-6. doi: 10.1016/j.virol.2011.03.014. Epub 2011 Apr 13.

17.

Two regions within the amino-terminal half of APOBEC3G cooperate to determine cytoplasmic localization.

Stenglein MD, Matsuo H, Harris RS.

J Virol. 2008 Oct;82(19):9591-9. doi: 10.1128/JVI.02471-07. Epub 2008 Jul 30.

18.

Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis.

Lavens D, Peelman F, Van der Heyden J, Uyttendaele I, Catteeuw D, Verhee A, Van Schoubroeck B, Kurth J, Hallenberger S, Clayton R, Tavernier J.

Nucleic Acids Res. 2010 Apr;38(6):1902-12. doi: 10.1093/nar/gkp1154. Epub 2009 Dec 16.

19.

The local dinucleotide preference of APOBEC3G can be altered from 5'-CC to 5'-TC by a single amino acid substitution.

Rathore A, Carpenter MA, Demir Ö, Ikeda T, Li M, Shaban NM, Law EK, Anokhin D, Brown WL, Amaro RE, Harris RS.

J Mol Biol. 2013 Nov 15;425(22):4442-54. doi: 10.1016/j.jmb.2013.07.040. Epub 2013 Aug 11.

20.

APOBEC3G oligomerization is associated with the inhibition of both Alu and LINE-1 retrotransposition.

Koyama T, Arias JF, Iwabu Y, Yokoyama M, Fujita H, Sato H, Tokunaga K.

PLoS One. 2013 Dec 19;8(12):e84228. doi: 10.1371/journal.pone.0084228. eCollection 2013.

Supplemental Content

Support Center