Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 277

1.

Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells.

Sowa MB, Goetz W, Baulch JE, Pyles DN, Dziegielewski J, Yovino S, Snyder AR, de Toledo SM, Azzam EI, Morgan WF.

Int J Radiat Biol. 2010 Feb;86(2):102-13. doi: 10.3109/09553000903419957.

PMID:
20148696
2.

Effects of low and high LET radiations on bystander human lung fibroblast cell survival.

Baskar R, Balajee AS, Geard CR.

Int J Radiat Biol. 2007 Aug;83(8):551-9.

PMID:
17613128
3.

Lack of bystander effects from high-LET radiation for early cytogenetic end points.

Groesser T, Cooper B, Rydberg B.

Radiat Res. 2008 Dec;170(6):794-802. doi: 10.1667/RR1458.1.

PMID:
19138042
4.

No evidence for a low linear energy transfer adaptive response in irradiated RKO cells.

Sowa MB, Goetz W, Baulch JE, Lewis AJ, Morgan WF.

Radiat Prot Dosimetry. 2011 Feb;143(2-4):311-4. doi: 10.1093/rpd/ncq487. Epub 2011 Jan 6.

PMID:
21216730
5.

Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: the impact of radiation quality.

Autsavapromporn N, Suzuki M, Funayama T, Usami N, Plante I, Yokota Y, Mutou Y, Ikeda H, Kobayashi K, Kobayashi Y, Uchihori Y, Hei TK, Azzam EI, Murakami T.

Radiat Res. 2013 Oct;180(4):367-75. doi: 10.1667/RR3111.1. Epub 2013 Aug 29.

6.

Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.

Autsavapromporn N, Plante I, Liu C, Konishi T, Usami N, Funayama T, Azzam EI, Murakami T, Suzuki M.

Int J Radiat Biol. 2015 Jan;91(1):62-70. doi: 10.3109/09553002.2014.950715.

PMID:
25084840
7.
8.
9.

Role of DNA-PKcs in the bystander effect after low- or high-LET irradiation.

Kanasugi Y, Hamada N, Wada S, Funayama T, Sakashita T, Kakizaki T, Kobayashi Y, Takakura K.

Int J Radiat Biol. 2007 Feb;83(2):73-80.

PMID:
17357428
10.
11.

A review of the bystander effect and its implications for low-dose exposure.

Prise KM, Folkard M, Michael BD.

Radiat Prot Dosimetry. 2003;104(4):347-55. Review.

PMID:
14579891
12.

The bystander effect.

Hall EJ.

Health Phys. 2003 Jul;85(1):31-5. Review.

PMID:
12852468
13.

A composite microdose Adaptive Response (AR) and Bystander Effect (BE) model-application to low LET and high LET AR and BE data.

Leonard BE.

Int J Radiat Biol. 2008 Aug;84(8):681-701. doi: 10.1080/09553000802241820.

PMID:
18661382
14.

Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication.

Harada K, Nonaka T, Hamada N, Sakurai H, Hasegawa M, Funayama T, Kakizaki T, Kobayashi Y, Nakano T.

Cancer Sci. 2009 Apr;100(4):684-8.

PMID:
19469013
15.

Bystander responses induced by low LET radiation.

Prise KM, Folkard M, Michael BD.

Oncogene. 2003 Oct 13;22(45):7043-9. Review.

PMID:
14557809
16.
17.

Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts.

Shao C, Furusawa Y, Aoki M, Ando K.

Radiat Res. 2003 Sep;160(3):318-23.

PMID:
12926990
18.

Effect of dose rate on the radiation-induced bystander response.

Gow MD, Seymour CB, Byun SH, Mothersill CE.

Phys Med Biol. 2008 Jan 7;53(1):119-32. doi: 10.1088/0031-9155/53/1/008. Epub 2007 Dec 13.

PMID:
18182691
19.

Genomic instability and bystander effects induced by high-LET radiation.

Hall EJ, Hei TK.

Oncogene. 2003 Oct 13;22(45):7034-42. Review.

PMID:
14557808
20.

Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells.

Shao C, Lyng FM, Folkard M, Prise KM.

Radiat Res. 2006 Sep;166(3):479-87.

PMID:
16953666

Supplemental Content

Support Center