Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114


CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.

Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP.

PLoS Biol. 2010 Jan 26;8(1):e1000286. doi: 10.1371/journal.pbio.1000286.


Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway.

Donnianni RA, Ferrari M, Lazzaro F, Clerici M, Tamilselvan Nachimuthu B, Plevani P, Muzi-Falconi M, Pellicioli A.

PLoS Genet. 2010 Jan 22;6(1):e1000763. doi: 10.1371/journal.pgen.1000763.


Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation.

Schleker T, Shimada K, Sack R, Pike BL, Gasser SM.

Cell Cycle. 2010 Jan 15;9(2):350-63. Epub 2010 Jan 27.


Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA).

Lopez-Mosqueda J, Vidanes GM, Toczyski DP.

Cell Cycle. 2010 Nov 1;9(21):4266-8. Epub 2010 Nov 14.


Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.

Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ.

Science. 1999 Nov 5;286(5442):1166-71.


Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.

Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D.

Curr Biol. 2005 Aug 9;15(15):1364-75.


Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest.

Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE.

Mol Cell. 2001 Feb;7(2):293-300.


Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo.

Berens TJ, Toczyski DP.

Mol Biol Cell. 2012 Mar;23(6):1058-67. doi: 10.1091/mbc.E11-10-0852. Epub 2012 Feb 1.


A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1.

Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP.

Mol Cell Biol. 2004 Dec;24(23):10126-44.


Association of Rad9 with double-strand breaks through a Mec1-dependent mechanism.

Naiki T, Wakayama T, Nakada D, Matsumoto K, Sugimoto K.

Mol Cell Biol. 2004 Apr;24(8):3277-85.


Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression.

Clerici M, Paciotti V, Baldo V, Romano M, Lucchini G, Longhese MP.

EMBO J. 2001 Nov 15;20(22):6485-98.


Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.

Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF.

Mol Cell. 2002 May;9(5):1055-65.


Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1.

Ma JL, Lee SJ, Duong JK, Stern DF.

J Biol Chem. 2006 Feb 17;281(7):3954-63. Epub 2005 Dec 19.


DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.

Ohouo PY, Bastos de Oliveira FM, Liu Y, Ma CJ, Smolka MB.

Nature. 2013 Jan 3;493(7430):120-4. doi: 10.1038/nature11658. Epub 2012 Nov 18.


Non-catalytic function for ATR in the checkpoint response.

McSherry TD, Kitazono AA, Javaheri A, Kron SJ, Mueller PR.

Cell Cycle. 2007 Aug 15;6(16):2019-30. Epub 2007 Jun 6.


Analysis of Polo-like kinase Cdc5 in the meiosis recombination checkpoint.

Iacovella MG, Daly CN, Kelly JS, Michielsen AJ, Clyne RK.

Cell Cycle. 2010 Mar 15;9(6):1182-93. Epub 2010 Mar 15.


Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast.

Ferrari M, Nachimuthu BT, Donnianni RA, Klein H, Pellicioli A.

DNA Repair (Amst). 2013 May 1;12(5):347-55. doi: 10.1016/j.dnarep.2013.02.004. Epub 2013 Mar 7.

Supplemental Content

Support Center