Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

Model of schottky barrier hot-electron-mode photodetection.

Vickers VE.

Appl Opt. 1971 Sep 1;10(9):2190-2. doi: 10.1364/AO.10.002190. No abstract available.

PMID:
20111293
2.

The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.

Lee SY, Kim TH, Chol NK, Seong HK, Choi HJ, Ahn BG, Lee SK.

J Nanosci Nanotechnol. 2008 Oct;8(10):5042-6.

PMID:
19198387
3.

ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect.

Kim J, Yun JH, Kim CH, Park YC, Woo JY, Park J, Lee JH, Yi J, Han CS.

Nanotechnology. 2010 Mar 19;21(11):115205. doi: 10.1088/0957-4484/21/11/115205. Epub 2010 Feb 22.

PMID:
20173241
4.

Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor.

Wei TY, Yeh PH, Lu SY, Wang ZL.

J Am Chem Soc. 2009 Dec 9;131(48):17690-5. doi: 10.1021/ja907585c.

PMID:
19950994
5.

Schottky barrier thin film transistors using solution-processed n-ZnO.

Adl AH, Ma A, Gupta M, Benlamri M, Tsui YY, Barlage DW, Shankar K.

ACS Appl Mater Interfaces. 2012 Mar;4(3):1423-8. doi: 10.1021/am201656h. Epub 2012 Mar 12.

PMID:
22387678
6.

Fabrication of Au/p-Si Schottky barrier for EBIC study.

Zhang X, Joy D.

Microsc Res Tech. 1994 Sep 1;29(1):47-53.

PMID:
8000084
7.

Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation.

Park JY, Lee H, Renzas JR, Zhang Y, Somorjai GA.

Nano Lett. 2008 Aug;8(8):2388-92. doi: 10.1021/nl8012456. Epub 2008 Jun 24.

PMID:
18572970
8.

Schottky barrier characteristics and internal gain mechanism of TiO2 UV detectors.

Zhang H, Zhang M, Feng C, Chen W, Liu C, Zhou J, Ruan S.

Appl Opt. 2012 Mar 1;51(7):894-7. doi: 10.1364/AO.51.000894.

PMID:
22410892
9.
10.

Monte Carlo simulation of electron drift velocity in low-temperature-grown gallium arsenide in a Schottky-barrier model.

Arifin P, Goldys E, Tansley TL.

Phys Rev B Condens Matter. 1995 Aug 15;52(8):5708-5713. No abstract available.

PMID:
9981757
11.

Electron flow generated by gas phase exothermic catalytic reactions using a platinum-gallium nitride nanodiode.

Ji X, Zuppero A, Gidwani JM, Somorjai GA.

J Am Chem Soc. 2005 Apr 27;127(16):5792-3.

PMID:
15839669
12.

Fabrication of Au/ZnO Schottky nanodiode using mesoporous silica film as template.

Gao F, Naik SP, Okubo T.

J Nanosci Nanotechnol. 2007 Aug;7(8):2894-8.

PMID:
17685313
13.

Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.

Somorjai GA, Bratlie KM, Montano MO, Park JY.

J Phys Chem B. 2006 Oct 12;110(40):20014-22.

PMID:
17020389
14.

Photodetection with active optical antennas.

Knight MW, Sobhani H, Nordlander P, Halas NJ.

Science. 2011 May 6;332(6030):702-4. doi: 10.1126/science.1203056.

15.

Properties of a Light-Modified-Breakdown Detector in GaAs.

Ballantyne JM, Baukus JP, Lavin JM.

Appl Opt. 1973 Oct 1;12(10):2486-93. doi: 10.1364/AO.12.002486.

PMID:
20125806
16.
17.

Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications.

Nozaki D, Kunstmann J, Zörgiebel F, Weber WM, Mikolajick T, Cuniberti G.

Nanotechnology. 2011 Aug 12;22(32):325703. doi: 10.1088/0957-4484/22/32/325703. Epub 2011 Jul 19.

PMID:
21772070
18.

Direct measurements of lateral variations of Schottky barrier height across "end-on" metal contacts to vertical Si nanowires by ballistic electron emission microscopy.

Cai W, Che Y, Pelz JP, Hemesath ER, Lauhon LJ.

Nano Lett. 2012 Feb 8;12(2):694-8. doi: 10.1021/nl203568c. Epub 2012 Jan 11.

PMID:
22214531
20.

Plasmonic energy collection through hot carrier extraction.

Wang F, Melosh NA.

Nano Lett. 2011 Dec 14;11(12):5426-30. doi: 10.1021/nl203196z. Epub 2011 Oct 27.

PMID:
22023372

Supplemental Content

Support Center