Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers.

Kim IJ, Zhang Y, Meister M, Sanes JR.

J Neurosci. 2010 Jan 27;30(4):1452-62. doi: 10.1523/JNEUROSCI.4779-09.2010.

2.

Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.

Triplett JW, Wei W, Gonzalez C, Sweeney NT, Huberman AD, Feller MB, Feldheim DA.

Neural Dev. 2014 Feb 5;9:2. doi: 10.1186/1749-8104-9-2.

3.

Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus.

Hong YK, Kim IJ, Sanes JR.

J Comp Neurol. 2011 Jun 15;519(9):1691-711. doi: 10.1002/cne.22595.

4.

Age-related alterations in neurons of the mouse retina.

Samuel MA, Zhang Y, Meister M, Sanes JR.

J Neurosci. 2011 Nov 2;31(44):16033-44. doi: 10.1523/JNEUROSCI.3580-11.2011.

6.

Developmental mechanisms that regulate retinal ganglion cell dendritic morphology.

Tian N.

Dev Neurobiol. 2011 Dec;71(12):1297-309. doi: 10.1002/dneu.20900.

7.

Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell Type That Senses Color Contrast and Ventral Motion.

Liu J, Sanes JR.

J Neurosci. 2017 Dec 13;37(50):12247-12262. doi: 10.1523/JNEUROSCI.2098-17.2017. Epub 2017 Nov 7.

PMID:
29114073
8.

Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster.

Lyckman AW, Moya KL, Confaloni A, Jhaveri S.

J Comp Neurol. 2000 Jul 17;423(1):40-51.

PMID:
10861535
9.

In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells.

Mumm JS, Williams PR, Godinho L, Koerber A, Pittman AJ, Roeser T, Chien CB, Baier H, Wong RO.

Neuron. 2006 Nov 22;52(4):609-21.

10.

Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells.

Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, Baccus SA, Barres BA.

Neuron. 2008 Aug 14;59(3):425-38. doi: 10.1016/j.neuron.2008.07.018.

11.

In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice.

Walsh MK, Quigley HA.

J Neurosci Methods. 2008 Mar 30;169(1):214-21. doi: 10.1016/j.jneumeth.2007.11.029. Epub 2007 Dec 8.

12.

Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them.

Yamagata M, Weiner JA, Dulac C, Roth KA, Sanes JR.

Mol Cell Neurosci. 2006 Nov;33(3):296-310. Epub 2006 Sep 15.

PMID:
16978878
13.

Development of single retinofugal axon arbors in normal and β2 knock-out mice.

Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC.

J Neurosci. 2011 Mar 2;31(9):3384-99. doi: 10.1523/JNEUROSCI.4899-10.2011.

14.

Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.

Kay JN, De la Huerta I, Kim IJ, Zhang Y, Yamagata M, Chu MW, Meister M, Sanes JR.

J Neurosci. 2011 May 25;31(21):7753-62. doi: 10.1523/JNEUROSCI.0907-11.2011.

15.
16.

Pathway-specific maturation, visual deprivation, and development of retinal pathway.

Xu H, Tian N.

Neuroscientist. 2004 Aug;10(4):337-46. Review.

PMID:
15271261
17.

Early neural activity and dendritic growth in turtle retinal ganglion cells.

Mehta V, Sernagor E.

Eur J Neurosci. 2006 Aug;24(3):773-86.

PMID:
16930407
18.

Dynamic responses of Xenopus retinal ganglion cell axon growth cones to netrin-1 as they innervate their in vivo target.

Shirkey NJ, Manitt C, Zuniga L, Cohen-Cory S.

Dev Neurobiol. 2012 Apr;72(4):628-48. doi: 10.1002/dneu.20967.

19.

In vivo development of dendritic orientation in wild-type and mislocalized retinal ganglion cells.

Choi JH, Law MY, Chien CB, Link BA, Wong RO.

Neural Dev. 2010 Nov 2;5:29. doi: 10.1186/1749-8104-5-29.

Supplemental Content

Support Center