Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3'-end processing factors.

Pancevac C, Goldstone DC, Ramos A, Taylor IA.

Nucleic Acids Res. 2010 May;38(9):3119-32. doi: 10.1093/nar/gkq002.

2.

Novel protein-protein contacts facilitate mRNA 3'-processing signal recognition by Rna15 and Hrp1.

Leeper TC, Qu X, Lu C, Moore C, Varani G.

J Mol Biol. 2010 Aug 20;401(3):334-49. doi: 10.1016/j.jmb.2010.06.032.

PMID:
20600122
3.

The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3'-end processing.

Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C.

J Biol Chem. 2007 Jan 19;282(3):2101-15.

4.
5.

Structural and biochemical analysis of the assembly and function of the yeast pre-mRNA 3' end processing complex CF I.

Barnwal RP, Lee SD, Moore C, Varani G.

Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21342-7. doi: 10.1073/pnas.1214102110.

6.

Structure of the yeast SR protein Npl3 and Interaction with mRNA 3'-end processing signals.

Deka P, Bucheli ME, Moore C, Buratowski S, Varani G.

J Mol Biol. 2008 Jan 4;375(1):136-50.

7.

Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA.

Noble CG, Walker PA, Calder LJ, Taylor IA.

Nucleic Acids Res. 2004 Jun 23;32(11):3364-75.

8.

The interaction of Pcf11 and Clp1 is needed for mRNA 3'-end formation and is modulated by amino acids in the ATP-binding site.

Ghazy MA, Gordon JM, Lee SD, Singh BN, Bohm A, Hampsey M, Moore C.

Nucleic Acids Res. 2012 Feb;40(3):1214-25. doi: 10.1093/nar/gkr801.

9.

Crystal structure of the Rna14-Rna15 complex.

Paulson AR, Tong L.

RNA. 2012 Jun;18(6):1154-62. doi: 10.1261/rna.032524.112.

10.

RNA recognition by the human polyadenylation factor CstF.

Takagaki Y, Manley JL.

Mol Cell Biol. 1997 Jul;17(7):3907-14.

12.

The P-loop domain of yeast Clp1 mediates interactions between CF IA and CPF factors in pre-mRNA 3' end formation.

Holbein S, Scola S, Loll B, Dichtl BS, Hübner W, Meinhart A, Dichtl B.

PLoS One. 2011;6(12):e29139. doi: 10.1371/journal.pone.0029139.

13.

Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor.

Noble CG, Beuth B, Taylor IA.

Nucleic Acids Res. 2007;35(1):87-99.

14.

Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.

Meinhart A, Cramer P.

Nature. 2004 Jul 8;430(6996):223-6.

PMID:
15241417
15.
16.

Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI.

Bucheli ME, He X, Kaplan CD, Moore CL, Buratowski S.

RNA. 2007 Oct;13(10):1756-64.

17.

Reconstitution of CF IA from overexpressed subunits reveals stoichiometry and provides insights into molecular topology.

Gordon JM, Shikov S, Kuehner JN, Liriano M, Lee E, Stafford W, Poulsen MB, Harrison C, Moore C, Bohm A.

Biochemistry. 2011 Nov 29;50(47):10203-14. doi: 10.1021/bi200964p.

18.

Functional analysis of yeast snoRNA and snRNA 3'-end formation mediated by uncoupling of cleavage and polyadenylation.

Morlando M, Greco P, Dichtl B, Fatica A, Keller W, Bozzoni I.

Mol Cell Biol. 2002 Mar;22(5):1379-89.

19.

An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination.

Haddad R, Maurice F, Viphakone N, Voisinet-Hakil F, Fribourg S, Minvielle-Sébastia L.

Nucleic Acids Res. 2012 Feb;40(3):1226-39. doi: 10.1093/nar/gkr800.

20.
Items per page

Supplemental Content

Support Center