Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Exploiting cell-free systems: Implementation and debugging of a system of biotransformations.

Bujara M, Schümperli M, Billerbeck S, Heinemann M, Panke S.

Biotechnol Bioeng. 2010 Jun 15;106(3):376-89. doi: 10.1002/bit.22666.

PMID:
20091765
2.

Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis.

Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S.

Nat Chem Biol. 2011 May;7(5):271-7. doi: 10.1038/nchembio.541. Epub 2011 Mar 20.

PMID:
21423171
3.

Restoring a metabolic pathway.

Richard JP.

ACS Chem Biol. 2008 Oct 17;3(10):605-7. doi: 10.1021/cb800238s.

PMID:
18928248
4.

Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis.

Frohlich KM, Roberts RA, Housley NA, Audia JP.

J Bacteriol. 2010 Sep;192(17):4281-8. doi: 10.1128/JB.00443-10. Epub 2010 Jun 25.

5.

Chemical and enzymatic routes to dihydroxyacetone phosphate.

Schümperli M, Pellaux R, Panke S.

Appl Microbiol Biotechnol. 2007 May;75(1):33-45. Epub 2007 Feb 22. Review.

PMID:
17318530
6.

In silico assessment of cell-free systems.

Bujara M, Panke S.

Biotechnol Bioeng. 2012 Oct;109(10):2620-9. doi: 10.1002/bit.24534. Epub 2012 May 2.

PMID:
22528509
7.

Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis.

Solem C, Koebmann B, Jensen PR.

IET Syst Biol. 2008 Mar;2(2):64-72. doi: 10.1049/iet-syb:20070002.

PMID:
18397117
8.
10.

Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism.

Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M.

Mol Syst Biol. 2009;5:306. doi: 10.1038/msb.2009.65. Epub 2009 Sep 15.

11.

Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate.

Choi KH, Shi J, Hopkins CE, Tolan DR, Allen KN.

Biochemistry. 2001 Nov 20;40(46):13868-75.

PMID:
11705376
12.

Metabolic correction of triose phosphate isomerase deficiency in vitro by complementation.

Ationu A, Humphries A, Bellingham A, Layton M.

Biochem Biophys Res Commun. 1997 Mar 17;232(2):528-31.

PMID:
9125215
13.

Analysis of NADPH supply during xylitol production by engineered Escherichia coli.

Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC.

Biotechnol Bioeng. 2009 Jan 1;102(1):209-20. doi: 10.1002/bit.22060.

PMID:
18698648
14.

The mode of condensation of aspartic acid and dihydroxyacetone phosphate in quinolinate synthesis in Escherichia coli.

Wicks FD, Sakakibara S, Gholson RK, Scott TA.

Biochim Biophys Acta. 1977 Nov 7;500(1):213-6.

PMID:
336100
15.

Effects of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis.

Capitanio D, Merico A, Ranzi BM, Compagno C.

Res Microbiol. 2002 Nov;153(9):593-8.

PMID:
12455707
16.
18.

Detection of precursors of quinolinic acid in Escherichia coli.

Chen J, Tritz GJ.

Microbios. 1976;16(65-66):207-18.

PMID:
196161
20.

Proton transfer in the mechanism of triosephosphate isomerase.

Harris TK, Cole RN, Comer FI, Mildvan AS.

Biochemistry. 1998 Nov 24;37(47):16828-38.

PMID:
9843453
Items per page

Supplemental Content

Write to the Help Desk