Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 169

1.

Role of the WNK-activated SPAK kinase in regulating blood pressure.

Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanović S, Jovanović A, O'Shaughnessy KM, Alessi DR.

EMBO Mol Med. 2010 Feb;2(2):63-75. doi: 10.1002/emmm.200900058.

2.

SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.

Ferdaus MZ, Barber KW, López-Cayuqueo KI, Terker AS, Argaiz ER, Gassaway BM, Chambrey R, Gamba G, Rinehart J, McCormick JA.

J Physiol. 2016 Sep 1;594(17):4945-66. doi: 10.1113/JP272311. Epub 2016 May 29.

3.

Critical role of the SPAK protein kinase CCT domain in controlling blood pressure.

Zhang J, Siew K, Macartney T, O'Shaughnessy KM, Alessi DR.

Hum Mol Genet. 2015 Aug 15;24(16):4545-58. doi: 10.1093/hmg/ddv185. Epub 2015 May 20.

4.

Cotransporters, WNKs and hypertension: an update.

Flatman PW.

Curr Opin Nephrol Hypertens. 2008 Mar;17(2):186-92. doi: 10.1097/MNH.0b013e3282f5244e. Review.

PMID:
18277153
5.

Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

Nishida H, Sohara E, Nomura N, Chiga M, Alessi DR, Rai T, Sasaki S, Uchida S.

Hypertension. 2012 Oct;60(4):981-90. doi: 10.1161/HYPERTENSIONAHA.112.201509. Epub 2012 Sep 4.

6.

Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome.

Lin SH, Yu IS, Jiang ST, Lin SW, Chu P, Chen A, Sytwu HK, Sohara E, Uchida S, Sasaki S, Yang SS.

Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17538-43. doi: 10.1073/pnas.1107452108. Epub 2011 Oct 4.

7.

Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters.

Mercier-Zuber A, O'Shaughnessy KM.

Curr Opin Nephrol Hypertens. 2011 Sep;20(5):534-40. doi: 10.1097/MNH.0b013e3283484b06. Review.

PMID:
21610494
8.

Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways.

Richardson C, Sakamoto K, de los Heros P, Deak M, Campbell DG, Prescott AR, Alessi DR.

J Cell Sci. 2011 Mar 1;124(Pt 5):789-800. doi: 10.1242/jcs.077230.

9.

Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.

Davies M, Fraser SA, Galic S, Choy SW, Katerelos M, Gleich K, Kemp BE, Mount PF, Power DA.

Am J Physiol Renal Physiol. 2014 Jul 1;307(1):F96-F106. doi: 10.1152/ajprenal.00524.2013. Epub 2014 May 7.

10.

SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.

Grimm PR, Taneja TK, Liu J, Coleman R, Chen YY, Delpire E, Wade JB, Welling PA.

J Biol Chem. 2012 Nov 2;287(45):37673-90. doi: 10.1074/jbc.M112.402800. Epub 2012 Sep 12.

11.

A SPAK isoform switch modulates renal salt transport and blood pressure.

McCormick JA, Mutig K, Nelson JH, Saritas T, Hoorn EJ, Yang CL, Rogers S, Curry J, Delpire E, Bachmann S, Ellison DH.

Cell Metab. 2011 Sep 7;14(3):352-64. doi: 10.1016/j.cmet.2011.07.009.

12.

Effect of heterozygous deletion of WNK1 on the WNK-OSR1/ SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels.

Susa K, Kita S, Iwamoto T, Yang SS, Lin SH, Ohta A, Sohara E, Rai T, Sasaki S, Alessi DR, Uchida S.

Clin Exp Nephrol. 2012 Aug;16(4):530-8.

PMID:
22294159
13.

Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models.

Liu Z, Xie J, Wu T, Truong T, Auchus RJ, Huang CL.

Hum Mol Genet. 2011 Mar 1;20(5):855-66. doi: 10.1093/hmg/ddq525. Epub 2010 Dec 2.

14.

Disruption of the with no lysine kinase-STE20-proline alanine-rich kinase pathway reduces the hypertension induced by angiotensin II.

Cervantes-Perez LG, Castaneda-Bueno M, Jimenez JV, Vazquez N, Rojas-Vega L, Alessi DR, Bobadilla NA, Gamba G.

J Hypertens. 2018 Feb;36(2):361-367. doi: 10.1097/HJH.0000000000001554.

15.

SPAK differentially mediates vasopressin effects on sodium cotransporters.

Saritas T, Borschewski A, McCormick JA, Paliege A, Dathe C, Uchida S, Terker A, Himmerkus N, Bleich M, Demaretz S, Laghmani K, Delpire E, Ellison DH, Bachmann S, Mutig K.

J Am Soc Nephrol. 2013 Feb;24(3):407-18. doi: 10.1681/ASN.2012040404. Epub 2013 Feb 7.

16.

Regulation of NKCC2 activity by inhibitory SPAK isoforms: KS-SPAK is a more potent inhibitor than SPAK2.

Park HJ, Curry JN, McCormick JA.

Am J Physiol Renal Physiol. 2013 Dec 15;305(12):F1687-96. doi: 10.1152/ajprenal.00211.2013. Epub 2013 Oct 16.

17.

The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction.

Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, Wood NT, Alessi DR, Kurz T.

Biochem J. 2013 Apr 1;451(1):111-22. doi: 10.1042/BJ20121903.

18.

The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters.

Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT.

Sci Signal. 2014 Jul 15;7(334):re3. doi: 10.1126/scisignal.2005365. Review.

PMID:
25028718
19.

SPAK deficiency corrects pseudohypoaldosteronism II caused by WNK4 mutation.

Chu PY, Cheng CJ, Wu YC, Fang YW, Chau T, Uchida S, Sasaki S, Yang SS, Lin SH.

PLoS One. 2013 Sep 11;8(9):e72969. doi: 10.1371/journal.pone.0072969. eCollection 2013.

20.

A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters.

Ponce-Coria J, Markadieu N, Austin TM, Flammang L, Rios K, Welling PA, Delpire E.

J Biol Chem. 2014 Jun 20;289(25):17680-8. doi: 10.1074/jbc.M113.540518. Epub 2014 May 8.

Supplemental Content

Support Center