Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Enhanced antibody half-life improves in vivo activity.

Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR.

Nat Biotechnol. 2010 Feb;28(2):157-9. doi: 10.1038/nbt.1601.

2.

Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease.

Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC.

Int Immunol. 2006 Dec;18(12):1759-69.

PMID:
17077181
3.

Humanized FcRn mouse models for evaluating pharmacokinetics of human IgG antibodies.

Proetzel G, Roopenian DC.

Methods. 2014 Jan 1;65(1):148-53. doi: 10.1016/j.ymeth.2013.07.005.

4.

Pharmacokinetics of engineered human monomeric and dimeric CH2 domains.

Gehlsen K, Gong R, Bramhill D, Wiersma D, Kirkpatrick S, Wang Y, Feng Y, Dimitrov DS.

MAbs. 2012 Jul-Aug;4(4):466-74. doi: 10.4161/mabs.20652.

5.

The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, Pham A, Bolton G, McDonough D, Lindquist K, Pons J, Rajpal A.

MAbs. 2015;7(2):331-43. doi: 10.1080/19420862.2015.1008353.

6.

Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding.

Andersen JT, Dalhus B, Viuff D, Ravn BT, Gunnarsen KS, Plumridge A, Bunting K, Antunes F, Williamson R, Athwal S, Allan E, Evans L, Bjørås M, Kjærulff S, Sleep D, Sandlie I, Cameron J.

J Biol Chem. 2014 May 9;289(19):13492-502. doi: 10.1074/jbc.M114.549832.

7.

Application of human FcRn transgenic mice as a pharmacokinetic screening tool of monoclonal antibody.

Haraya K, Tachibana T, Nanami M, Ishigai M.

Xenobiotica. 2014 Dec;44(12):1127-34. doi: 10.3109/00498254.2014.941963.

PMID:
25030041
8.

Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody.

Monnet C, Jorieux S, Souyris N, Zaki O, Jacquet A, Fournier N, Crozet F, de Romeuf C, Bouayadi K, Urbain R, Behrens CK, Mondon P, Fontayne A.

MAbs. 2014 Mar-Apr;6(2):422-36. doi: 10.4161/mabs.27854.

9.

A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life.

Souders CA, Nelson SC, Wang Y, Crowley AR, Klempner MS, Thomas W Jr.

MAbs. 2015;7(5):912-21. doi: 10.1080/19420862.2015.1054585.

10.

pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling.

Borrok MJ, Wu Y, Beyaz N, Yu XQ, Oganesyan V, Dall'Acqua WF, Tsui P.

J Biol Chem. 2015 Feb 13;290(7):4282-90. doi: 10.1074/jbc.M114.603712.

11.

Immune suppression in cynomolgus monkeys by XPro9523: an improved CTLA4-Ig fusion with enhanced binding to CD80, CD86 and neonatal Fc receptor FcRn.

Bernett MJ, Chu SY, Leung I, Moore GL, Lee SH, Pong E, Chen H, Phung S, Muchhal US, Horton HM, Lazar GA, Desjarlais JR, Szymkowski DE.

MAbs. 2013 May-Jun;5(3):384-96. doi: 10.4161/mabs.23976.

12.

Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.

Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, Yamaguchi T.

J Immunol. 2010 Feb 15;184(4):1968-76. doi: 10.4049/jimmunol.0903296.

13.

Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys.

Deng R, Loyet KM, Lien S, Iyer S, DeForge LE, Theil FP, Lowman HB, Fielder PJ, Prabhu S.

Drug Metab Dispos. 2010 Apr;38(4):600-5. doi: 10.1124/dmd.109.031310.

14.

Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn).

Dall'Acqua WF, Kiener PA, Wu H.

J Biol Chem. 2006 Aug 18;281(33):23514-24.

15.

Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering.

Wang Y, Tian Z, Thirumalai D, Zhang X.

J Drug Target. 2014 May;22(4):269-78. doi: 10.3109/1061186X.2013.875030. Review.

PMID:
24404896
16.

Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting.

Meyer S, Nederend M, Jansen JH, Reiding KR, Jacobino SR, Meeldijk J, Bovenschen N, Wuhrer M, Valerius T, Ubink R, Boross P, Rouwendal G, Leusen JH.

MAbs. 2016;8(1):87-98. doi: 10.1080/19420862.2015.1106658.

17.

Selection of IgG Variants with Increased FcRn Binding Using Random and Directed Mutagenesis: Impact on Effector Functions.

Monnet C, Jorieux S, Urbain R, Fournier N, Bouayadi K, De Romeuf C, Behrens CK, Fontayne A, Mondon P.

Front Immunol. 2015 Feb 4;6:39. doi: 10.3389/fimmu.2015.00039.

18.

Influence of improved FcRn binding on the subcutaneous bioavailability of monoclonal antibodies in cynomolgus monkeys.

Datta-Mannan A, Witcher DR, Lu J, Wroblewski VJ.

MAbs. 2012 Mar-Apr;4(2):267-73. doi: 10.4161/mabs.4.2.19364.

19.

Quantitative Analysis of Human Neonatal Fc Receptor (FcRn) Tissue Expression in Transgenic Mice by Online Peptide Immuno-Affinity LC-HRMS.

Fan YY, Neubert H.

Anal Chem. 2016 Apr 19;88(8):4239-47. doi: 10.1021/acs.analchem.5b03900.

PMID:
27012525
20.

Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn.

Ying T, Wang Y, Feng Y, Prabakaran P, Gong R, Wang L, Crowder K, Dimitrov DS.

MAbs. 2015;7(5):922-30. doi: 10.1080/19420862.2015.1067353.

Items per page

Supplemental Content

Support Center