Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.
2.

Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture.

Lampe KJ, Mooney RG, Bjugstad KB, Mahoney MJ.

J Biomed Mater Res A. 2010 Sep 15;94(4):1162-71. doi: 10.1002/jbm.a.32787.

PMID:
20694983
3.
4.
5.
6.

Control of neural cell composition in poly(ethylene glycol) hydrogel culture with soluble factors.

Mooney R, Haeger S, Lawal R, Mason M, Shrestha N, Laperle A, Bjugstad K, Mahoney M.

Tissue Eng Part A. 2011 Nov;17(21-22):2805-15. doi: 10.1089/ten.tea.2010.0654. Epub 2011 Aug 8.

7.
10.

Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.

Skaalure SC, Dimson SO, Pennington AM, Bryant SJ.

Acta Biomater. 2014 Aug;10(8):3409-20. doi: 10.1016/j.actbio.2014.04.013. Epub 2014 Apr 24.

PMID:
24769116
11.

Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

Peng S, Yang SR, Ko CY, Peng YS, Chu IM.

J Biomed Mater Res A. 2013 Nov;101(11):3311-9. doi: 10.1002/jbm.a.34632. Epub 2013 Aug 27.

PMID:
24039062
12.

Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.

Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.

Acta Biomater. 2009 Jul;5(6):1884-97. doi: 10.1016/j.actbio.2009.01.036. Epub 2009 Feb 1.

PMID:
19250891
13.

Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.

Roberts JJ, Nicodemus GD, Greenwald EC, Bryant SJ.

Clin Orthop Relat Res. 2011 Oct;469(10):2725-34. doi: 10.1007/s11999-011-1823-0.

14.

Contrasting effects of collagen and bFGF-2 on neural cell function in degradable synthetic PEG hydrogels.

Mahoney MJ, Anseth KS.

J Biomed Mater Res A. 2007 May;81(2):269-78.

PMID:
17120204
15.

PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering.

Cui H, Shao J, Wang Y, Zhang P, Chen X, Wei Y.

Biomacromolecules. 2013 Jun 10;14(6):1904-12. doi: 10.1021/bm4002766. Epub 2013 May 9.

PMID:
23611017
16.

Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells.

Lieb E, Tessmar J, Hacker M, Fischbach C, Rose D, Blunk T, Mikos AG, Göpferich A, Schulz MB.

Tissue Eng. 2003 Feb;9(1):71-84.

PMID:
12625956
17.

An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease.

Xie B, Jin L, Luo Z, Yu J, Shi S, Zhang Z, Shen M, Chen H, Li X, Song Z.

Int J Pharm. 2015 Jul 25;490(1-2):375-83. doi: 10.1016/j.ijpharm.2015.05.071. Epub 2015 May 28.

PMID:
26027491
18.

Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation.

Benoit DS, Durney AR, Anseth KS.

Tissue Eng. 2006 Jun;12(6):1663-73.

PMID:
16846361
19.

Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels.

Moeinzadeh S, Barati D, He X, Jabbari E.

Biomacromolecules. 2012 Jul 9;13(7):2073-86. doi: 10.1021/bm300453k. Epub 2012 Jun 11.

PMID:
22642902
20.

Supplemental Content

Support Center