Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes.

Musa-Aziz R, Boron WF, Parker MD.

Methods. 2010 May;51(1):134-45. doi: 10.1016/j.ymeth.2009.12.012. Epub 2010 Jan 4. Review. Erratum in: Methods. 2011 Aug;54(4):462.

2.

Endogenous transport systems in the Xenopus laevis oocyte plasma membrane.

Sobczak K, Bangel-Ruland N, Leier G, Weber WM.

Methods. 2010 May;51(1):183-9. doi: 10.1016/j.ymeth.2009.12.001. Epub 2009 Dec 4. Review.

PMID:
19963061
3.

Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes.

Terhag J, Cavara NA, Hollmann M.

Methods. 2010 May;51(1):66-74. doi: 10.1016/j.ymeth.2010.01.034. Epub 2010 Feb 1. Review.

PMID:
20123125
4.

A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes.

Zampighi GA, Kreman M, Boorer KJ, Loo DD, Bezanilla F, Chandy G, Hall JE, Wright EM.

J Membr Biol. 1995 Nov;148(1):65-78.

PMID:
8558603
5.
7.

Proton transport mechanism in the cell membrane of Xenopus laevis oocytes.

Burckhardt BC, Kroll B, Frömter E.

Pflugers Arch. 1992 Jan;420(1):78-82.

PMID:
1313170
8.

Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters.

Mackey JR, Yao SY, Smith KM, Karpinski E, Baldwin SA, Cass CE, Young JD.

J Natl Cancer Inst. 1999 Nov 3;91(21):1876-81.

PMID:
10547395
10.

Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity.

Parker MD, Musa-Aziz R, Rojas JD, Choi I, Daly CM, Boron WF.

J Biol Chem. 2008 May 9;283(19):12777-88. doi: 10.1074/jbc.M707829200. Epub 2008 Mar 4.

11.

Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes.

Wu J, McNicholas CM, Bevensee MO.

Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14150-5. doi: 10.1073/pnas.0906303106. Epub 2009 Aug 10.

12.

Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule.

Jutabha P, Kanai Y, Hosoyamada M, Chairoungdua A, Kim DK, Iribe Y, Babu E, Kim JY, Anzai N, Chatsudthipong V, Endou H.

J Biol Chem. 2003 Jul 25;278(30):27930-8. Epub 2003 May 10.

13.

Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.

Tammaro P, Shimomura K, Proks P.

Methods Mol Biol. 2008;491:127-39. doi: 10.1007/978-1-59745-526-8_10.

PMID:
18998089
14.

Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes.

Zampighi GA, Loo DD, Kreman M, Eskandari S, Wright EM.

J Gen Physiol. 1999 Apr;113(4):507-24.

15.

Electrophysiological recording from Xenopus oocytes.

Stühmer W.

Methods Enzymol. 1992;207:319-39. No abstract available.

PMID:
1382188
16.

Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters.

Boll M, Foltz M, Rubio-Aliaga I, Kottra G, Daniel H.

J Biol Chem. 2002 Jun 21;277(25):22966-73. Epub 2002 Apr 16.

17.

Functional expression of human intestinal Na+-dependent and Na+-independent nucleoside transporters in Xenopus laevis oocytes.

Chandrasena G, Giltay R, Patil SD, Bakken A, Unadkat JD.

Biochem Pharmacol. 1997 Jun 15;53(12):1909-18.

PMID:
9256166
18.

Expression of functional sodium channels in stage II-III Xenopus oocytes.

Krafte DS, Lester HA.

J Neurosci Methods. 1989 Jan;26(3):211-5.

PMID:
2537447
19.

Ion selectivity of pore-forming peptides and ion channels measured in Xenopus oocytes.

Cens T, Charnet P.

Methods Mol Biol. 2014;1183:355-69. doi: 10.1007/978-1-4939-1096-0_22.

PMID:
25023320
20.

Supplemental Content

Support Center