Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160


Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation.

Schleker T, Shimada K, Sack R, Pike BL, Gasser SM.

Cell Cycle. 2010 Jan 15;9(2):350-63. Epub 2010 Jan 27.


CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.

Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP.

PLoS Biol. 2010 Jan 26;8(1):e1000286. doi: 10.1371/journal.pbio.1000286.


Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.

Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ.

Science. 1999 Nov 5;286(5442):1166-71.


Cdc28-dependent regulation of the Cdc5/Polo kinase.

Mortensen EM, Haas W, Gygi M, Gygi SP, Kellogg DR.

Curr Biol. 2005 Nov 22;15(22):2033-7.


A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1.

Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP.

Mol Cell Biol. 2004 Dec;24(23):10126-44.


Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway.

Donnianni RA, Ferrari M, Lazzaro F, Clerici M, Tamilselvan Nachimuthu B, Plevani P, Muzi-Falconi M, Pellicioli A.

PLoS Genet. 2010 Jan 22;6(1):e1000763. doi: 10.1371/journal.pgen.1000763.


Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.

Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD.

Mol Cell Proteomics. 2014 Feb;13(2):551-65. doi: 10.1074/mcp.M113.034058. Epub 2013 Dec 3.


The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway.

Acosta I, Ontoso D, San-Segundo PA.

Mol Biol Cell. 2011 Sep;22(18):3478-90. doi: 10.1091/mbc.E11-06-0482. Epub 2011 Jul 27.


Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA).

Lopez-Mosqueda J, Vidanes GM, Toczyski DP.

Cell Cycle. 2010 Nov 1;9(21):4266-8. Epub 2010 Nov 14.


Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest.

Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE.

Mol Cell. 2001 Feb;7(2):293-300.


Molecular basis of the essential s phase function of the rad53 checkpoint kinase.

Hoch NC, Chen ES, Buckland R, Wang SC, Fazio A, Hammet A, Pellicioli A, Chabes A, Tsai MD, Heierhorst J.

Mol Cell Biol. 2013 Aug;33(16):3202-13. doi: 10.1128/MCB.00474-13. Epub 2013 Jun 10.


Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.

Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF.

Mol Cell. 2002 May;9(5):1055-65.


Ectopic expression of human Cdk2 and its yeast homolog, Ime2, is deleterious to Saccharomyces cerevisiae.

Szwarcwort-Cohen M, Gurevich V, Sagee S, Kassir Y.

Cell Cycle. 2010 Dec 1;9(23):4711-9. Epub 2010 Dec 1.


Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae.

Chen SH, Smolka MB, Zhou H.

J Biol Chem. 2007 Jan 12;282(2):986-95. Epub 2006 Nov 17.


Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage.

Cordón-Preciado V, Ufano S, Bueno A.

Nucleic Acids Res. 2006;34(20):5852-62. Epub 2006 Oct 24.


Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase.

Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M.

EMBO J. 1999 Nov 15;18(22):6561-72.


Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.

Zegerman P, Diffley JF.

Nature. 2010 Sep 23;467(7314):474-8. doi: 10.1038/nature09373. Epub 2010 Sep 12.

Supplemental Content

Support Center