Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106


High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis.

Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, Guo L, Kulkarni RN, Loscalzo J, Stanton RC.

FASEB J. 2010 May;24(5):1497-505. doi: 10.1096/fj.09-136572.


G6PD up-regulation promotes pancreatic beta-cell dysfunction.

Lee JW, Choi AH, Ham M, Kim JW, Choe SS, Park J, Lee GY, Yoon KH, Kim JB.

Endocrinology. 2011 Mar;152(3):793-803. doi: 10.1210/en.2010-0606.


Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.

Serpillon S, Floyd BC, Gupte RS, George S, Kozicky M, Neito V, Recchia F, Stanley W, Wolin MS, Gupte SA.

Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H153-62. doi: 10.1152/ajpheart.01142.2008.


Glucose-6-phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria.

Xu Y, Zhang Z, Hu J, Stillman IE, Leopold JA, Handy DE, Loscalzo J, Stanton RC.

FASEB J. 2010 Feb;24(2):609-16. doi: 10.1096/fj.09-135731.


High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells.

Zhang Z, Apse K, Pang J, Stanton RC.

J Biol Chem. 2000 Dec 22;275(51):40042-7. Erratum in: J Biol Chem 2001 Feb 16;276(7):5412.


Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.

Torres-Ramírez N, Baiza-Gutman LA, García-Macedo R, Ortega-Camarillo C, Contreras-Ramos A, Medina-Navarro R, Cruz M, Ibáñez-Hernández MÁ, Díaz-Flores M.

Life Sci. 2013 Dec 18;93(25-26):975-85. doi: 10.1016/j.lfs.2013.10.023.


Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose.

Zhang Z, Yang Z, Zhu B, Hu J, Liew CW, Zhang Y, Leopold JA, Handy DE, Loscalzo J, Stanton RC.

PLoS One. 2012;7(11):e49128. doi: 10.1371/journal.pone.0049128.


Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.

Sun Y, Gu X, Zhang E, Park MA, Pereira AM, Wang S, Morrison T, Li C, Blenis J, Gerbaudo VH, Henske EP, Yu JJ.

Cell Death Dis. 2014 May 15;5:e1231. doi: 10.1038/cddis.2014.204.


The orphan nuclear receptor small heterodimer partner negatively regulates pancreatic beta cell survival and hyperglycemia in multiple low-dose streptozotocin-induced type 1 diabetic mice.

Noh JR, Hwang JH, Kim YH, Kim KS, Gang GT, Kim SW, Kim DK, Shong M, Lee IK, Choi HS, Lee CH.

Int J Biochem Cell Biol. 2013 Aug;45(8):1538-45. doi: 10.1016/j.biocel.2013.05.004.


TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression.

Zhang W, Ni C, Sheng J, Hua Y, Ma J, Wang L, Zhao Y, Xing Y.

PLoS One. 2013 Nov 21;8(11):e79760. doi: 10.1371/journal.pone.0079760.


Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans.

Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH, Cheng ML, Ho HY, Lo SJ, Chiu DT.

Cell Death Dis. 2013 May 2;4:e616. doi: 10.1038/cddis.2013.132.


Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis.

Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J.

J Biol Chem. 2003 Aug 22;278(34):32100-6.


High prevalence of glucose-6-phosphate dehydrogenase deficiency without gene mutation suggests a novel genetic mechanism predisposing to ketosis-prone diabetes.

Sobngwi E, Gautier JF, Kevorkian JP, Villette JM, Riveline JP, Zhang S, Vexiau P, Leal SM, Vaisse C, Mauvais-Jarvis F.

J Clin Endocrinol Metab. 2005 Aug;90(8):4446-51.


Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.

Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R.

Circ Res. 2003 Jul 25;93(2):e9-16.


Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress.

Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D.

EMBO J. 2014 Jun 17;33(12):1304-20. doi: 10.1002/embj.201387224.


Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.

Gupte RS, Floyd BC, Kozicky M, George S, Ungvari ZI, Neito V, Wolin MS, Gupte SA.

Free Radic Biol Med. 2009 Aug 1;47(3):219-28. doi: 10.1016/j.freeradbiomed.2009.01.028.


Impairment of pancreatic β-cell function by chronic intermittent hypoxia.

Wang N, Khan SA, Prabhakar NR, Nanduri J.

Exp Physiol. 2013 Sep;98(9):1376-85. doi: 10.1113/expphysiol.2013.072454.

Items per page

Supplemental Content

Support Center