Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

A novel two domain-fusion protein in cyanobacteria with similarity to the CAB/ELIP/HLIP superfamily: evolutionary implications and regulation.

Kilian O, Steunou AS, Grossman AR, Bhaya D.

Mol Plant. 2008 Jan;1(1):155-66. doi: 10.1093/mp/ssm019. Epub 2007 Dec 3.

2.
3.
4.

An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins.

Jansson S, Andersson J, Kim SJ, Jackowski G.

Plant Mol Biol. 2000 Jan;42(2):345-51.

PMID:
10794534
5.

The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light.

He Q, Dolganov N, Bjorkman O, Grossman AR.

J Biol Chem. 2001 Jan 5;276(1):306-14.

7.
8.

Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria.

Chen M, Zhang Y, Blankenship RE.

Photosynth Res. 2008 Feb-Mar;95(2-3):147-54. Epub 2007 Oct 3.

PMID:
17912604
9.

Analysis of the hli gene family in marine and freshwater cyanobacteria.

Bhaya D, Dufresne A, Vaulot D, Grossman A.

FEMS Microbiol Lett. 2002 Oct 8;215(2):209-19.

10.

Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice.

Umate P.

Plant Signal Behav. 2010 Dec;5(12):1537-42. doi: 10.4161/psb.5.12.13410.

11.

Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats.

Adams MM, Gómez-García MR, Grossman AR, Bhaya D.

J Bacteriol. 2008 Dec;190(24):8171-84. doi: 10.1128/JB.01011-08. Epub 2008 Oct 17.

13.

The small CAB-like proteins of Synechocystis sp. PCC 6803 bind chlorophyll. In vitro pigment reconstitution studies on one-helix light-harvesting-like proteins.

Storm P, Hernandez-Prieto MA, Eggink LL, Hoober JK, Funk C.

Photosynth Res. 2008 Oct-Dec;98(1-3):479-88. doi: 10.1007/s11120-008-9368-0. Epub 2008 Oct 3.

PMID:
18836846
14.

Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily.

Engelken J, Brinkmann H, Adamska I.

BMC Evol Biol. 2010 Jul 30;10:233. doi: 10.1186/1471-2148-10-233.

15.
16.

Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481.

Shui J, Saunders E, Needleman R, Nappi M, Cooper J, Hall L, Kehoe D, Stowe-Evans E.

Plant Cell Physiol. 2009 Aug;50(8):1507-21. doi: 10.1093/pcp/pcp095. Epub 2009 Jun 27.

PMID:
19561333
17.

A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution.

Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR.

J Mol Evol. 1999 Jan;48(1):59-68.

PMID:
9873077
18.

New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri, a case study.

Six C, Worden AZ, Rodríguez F, Moreau H, Partensky F.

Mol Biol Evol. 2005 Nov;22(11):2217-30. Epub 2005 Jul 27.

PMID:
16049197
20.

Cyanobacterial high-light-inducible proteins--Protectors of chlorophyll-protein synthesis and assembly.

Komenda J, Sobotka R.

Biochim Biophys Acta. 2016 Mar;1857(3):288-95. doi: 10.1016/j.bbabio.2015.08.011. Epub 2015 Sep 2. Review.

Supplemental Content

Support Center