Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy.

Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, Guizard N, McGrath E, Geva J, Annese D, Dunbar-Masterson C, Trainor B, Laussen PC, du Plessis AJ.

Circulation. 2010 Jan 5;121(1):26-33. doi: 10.1161/CIRCULATIONAHA.109.865568. Epub 2009 Dec 21.

2.

Clinical Factors Associated with Cerebral Metabolism in Term Neonates with Congenital Heart Disease.

Harbison AL, Votava-Smith JK, Del Castillo S, Kumar SR, Lee V, Schmithorst V, Lai HA, O'Neil S, Bluml S, Paquette L, Panigrahy A.

J Pediatr. 2017 Apr;183:67-73.e1. doi: 10.1016/j.jpeds.2016.12.061. Epub 2017 Jan 19.

PMID:
28109537
3.

Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.

Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse-Wortmann L, Jaeggi E, McCrindle BW, Kingdom J, Hickey E, Miller S, Seed M.

Circulation. 2015 Apr 14;131(15):1313-23. doi: 10.1161/CIRCULATIONAHA.114.013051. Epub 2015 Mar 11.

4.

Volume of intracranial structures on three-dimensional ultrasound in fetuses with congenital heart disease.

Zeng S, Zhou QC, Zhou JW, Li M, Long C, Peng QH.

Ultrasound Obstet Gynecol. 2015 Aug;46(2):174-81. doi: 10.1002/uog.14677. Epub 2015 Jul 14.

5.

3-D volumetric MRI evaluation of the placenta in fetuses with complex congenital heart disease.

Andescavage N, Yarish A, Donofrio M, Bulas D, Evangelou I, Vezina G, McCarter R, duPlessis A, Limperopoulos C.

Placenta. 2015 Sep;36(9):1024-30. doi: 10.1016/j.placenta.2015.06.013. Epub 2015 Jul 6.

6.

Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case-control study.

Al Nafisi B, van Amerom JF, Forsey J, Jaeggi E, Grosse-Wortmann L, Yoo SJ, Macgowan CK, Seed M.

J Cardiovasc Magn Reson. 2013 Jul 27;15:65. doi: 10.1186/1532-429X-15-65.

7.

Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth.

Masoller N, Sanz-CortéS M, Crispi F, Gómez O, Bennasar M, Egaña-Ugrinovic G, Bargalló N, Martínez JM, Gratacós E.

Ultrasound Obstet Gynecol. 2016 Jan;47(1):65-73. doi: 10.1002/uog.14919.

8.

Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study.

Braun KP, van Eijsden P, Vandertop WP, de Graaf RA, Gooskens RH, Tulleken KA, Nicolay K.

J Neurosurg. 1999 Oct;91(4):660-8.

PMID:
10507389
9.

Metabolic information from the human fetal brain obtained with proton magnetic resonance spectroscopy.

Kok RD, van den Bergh AJ, Heerschap A, Nijland R, van den Berg PP.

Am J Obstet Gynecol. 2001 Nov;185(5):1011-5.

PMID:
11717623
10.

Assessment by three-dimensional power Doppler ultrasound of cerebral blood flow perfusion in fetuses with congenital heart disease.

Zeng S, Zhou J, Peng Q, Tian L, Xu G, Zhao Y, Wang T, Zhou Q.

Ultrasound Obstet Gynecol. 2015 Jun;45(6):649-56. doi: 10.1002/uog.14798.

11.

Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates.

Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, Ferriero DM.

AJNR Am J Neuroradiol. 1999 Sep;20(8):1399-405.

12.

Proton magnetic resonance spectroscopy of brain in congenital myotonic dystrophy.

Hashimoto T, Tayama M, Yoshimoto T, Miyazaki M, Harada M, Miyoshi H, Tanouchi M, Kuroda Y.

Pediatr Neurol. 1995 May;12(4):335-40.

PMID:
7546006
13.

Proton magnetic resonance spectroscopy in the evaluation of children with congenital heart disease and acute central nervous system injury.

Ashwal S, Holshouser BA, Hinshaw DB Jr, Schell RM, Bailey L.

J Thorac Cardiovasc Surg. 1996 Aug;112(2):403-14.

14.

Fetal cardiac disease and fetal lung volume: an in utero MRI investigation.

Mlczoch E, Schmidt L, Schmid M, Kasprian G, Frantal S, Berger-Kulemann V, Prayer D, Michel-Behnke I, Salzer-Muhar U.

Prenat Diagn. 2014 Mar;34(3):273-8. doi: 10.1002/pd.4308. Epub 2014 Jan 20.

PMID:
24446032
15.

MRI, volumetry, 1H spectroscopy, and cerebropetal blood flowmetry in childhood idiopathic anatomic megalencephaly.

Koudijs SM, van der Grond J, Hoogendoorn ML, Hulshoff Pol HE, Schnack HG, Witkamp TD, Gooskens RH, van Nieuwenhuizen O, Braun KP.

J Magn Reson Imaging. 2006 Aug;24(2):282-7.

PMID:
16786580
16.

Characterization of intracranial mass lesions with in vivo proton MR spectroscopy.

Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK.

AJNR Am J Neuroradiol. 1995 Sep;16(8):1593-603.

17.

MR spectroscopy of the fetal brain: is it possible without sedation?

Berger-Kulemann V, Brugger PC, Pugash D, Krssak M, Weber M, Wielandner A, Prayer D.

AJNR Am J Neuroradiol. 2013 Feb;34(2):424-31. doi: 10.3174/ajnr.A3196. Epub 2012 Jul 19.

18.

Fetal MRI detects early alterations of brain development in Tetralogy of Fallot.

Schellen C, Ernst S, Gruber GM, Mlczoch E, Weber M, Brugger PC, Ulm B, Langs G, Salzer-Muhar U, Prayer D, Kasprian G.

Am J Obstet Gynecol. 2015 Sep;213(3):392.e1-7. doi: 10.1016/j.ajog.2015.05.046. Epub 2015 May 23.

PMID:
26008177
19.

Magnetic resonance spectroscopy in pre-eclampsia: evidence of cerebral ischaemia.

Rutherford JM, Moody A, Crawshaw S, Rubin PC.

BJOG. 2003 Apr;110(4):416-23.

20.

Proton magnetic resonance spectroscopic findings of cerebral fat embolism induced by triolein emulsion in cats.

Baik SK, Kim YW, Kim HJ, Lee JW, Cho BM, Kim DH, Choi SH, Lee SH, Chang KH.

Acta Radiol. 2008 Dec;49(10):1174-81. doi: 10.1080/02841850802512449.

PMID:
19031181

Supplemental Content

Support Center