Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

High-throughput transient transformation of Arabidopsis roots enables systematic colocalization analysis of GFP-tagged proteins.

Van Loock B, Markakis MN, Verbelen JP, Vissenberg K.

Plant Signal Behav. 2010 Mar;5(3):261-3. Epub 2010 Mar 10.

2.
3.

A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

Xu K, Huang X, Wu M, Wang Y, Chang Y, Liu K, Zhang J, Zhang Y, Zhang F, Yi L, Li T, Wang R, Tan G, Li C.

PLoS One. 2014 Jan 8;9(1):e83556. doi: 10.1371/journal.pone.0083556. eCollection 2014.

4.

High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions.

Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH.

Plant J. 2005 Jan;41(1):162-74.

5.

A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies.

Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR.

Plant J. 2010 Oct;64(2):355-65. doi: 10.1111/j.1365-313X.2010.04322.x. Epub 2010 Sep 9.

6.

Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings.

Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD.

Plant J. 2008 Oct;56(1):169-79. doi: 10.1111/j.1365-313X.2008.03596.x. Epub 2008 Jul 4.

7.

An efficient Agrobacterium-mediated transient transformation of Arabidopsis.

Tsuda K, Qi Y, Nguyen le V, Bethke G, Tsuda Y, Glazebrook J, Katagiri F.

Plant J. 2012 Feb;69(4):713-9. doi: 10.1111/j.1365-313X.2011.04819.x. Epub 2011 Nov 17.

8.
9.
10.

Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

Cui Y, Gao C, Zhao Q, Jiang L.

Methods Mol Biol. 2016;1474:113-23. doi: 10.1007/978-1-4939-6352-2_7.

PMID:
27515077
11.

T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

Ghedira R, De Buck S, Van Ex F, Angenon G, Depicker A.

Planta. 2013 Dec;238(6):1025-37. doi: 10.1007/s00425-013-1948-3. Epub 2013 Aug 24.

PMID:
23975012
12.

Agrobacterium tumefaciens-mediated transient transformation of Arabidopsis thaliana leaves.

Mangano S, Gonzalez CD, Petruccelli S.

Methods Mol Biol. 2014;1062:165-73. doi: 10.1007/978-1-62703-580-4_8.

PMID:
24057365
13.

Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment.

Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V.

Nat Protoc. 2009;4(1):71-7. doi: 10.1038/nprot.2008.217.

PMID:
19131958
14.
16.
17.

The Arabidopsis class VIII myosin ATM2 is involved in endocytosis.

Sattarzadeh A, Franzen R, Schmelzer E.

Cell Motil Cytoskeleton. 2008 Jun;65(6):457-68. doi: 10.1002/cm.20271.

PMID:
18393384
18.

Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM.

Phytopathology. 2015 Feb;105(2):160-8. doi: 10.1094/PHYTO-05-14-0133-R.

19.

FAST technique for Agrobacterium-mediated transient gene expression in seedlings of Arabidopsis and other plant species.

Li JF, Nebenführ A.

Cold Spring Harb Protoc. 2010 May;2010(5):pdb.prot5428. doi: 10.1101/pdb.prot5428.

PMID:
20439415
20.

ER disruption and GFP degradation during non-regenerable transformation of flax with Agrobacterium tumefaciens.

Bleho J, Obert B, Takáč T, Petrovská B, Heym C, Menzel D, Samaj J.

Protoplasma. 2012 Jan;249(1):53-63. doi: 10.1007/s00709-010-0261-2. Epub 2011 Jan 26.

PMID:
21267608

Supplemental Content

Support Center