Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Genomic inventory and transcriptional analysis of Medicago truncatula transporters.

Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK.

Plant Physiol. 2010 Mar;152(3):1716-30. doi: 10.1104/pp.109.148684. Epub 2009 Dec 18.

2.

Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.

Küster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A.

J Biotechnol. 2004 Mar 4;108(2):95-113.

PMID:
15129719
3.

Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes.

Frenzel A, Manthey K, Perlick AM, Meyer F, Pühler A, Küster H, Krajinski F.

Mol Plant Microbe Interact. 2005 Aug;18(8):771-82.

4.

Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula.

Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP.

Plant Physiol. 2002 Oct;130(2):519-37.

6.

MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula.

Hofferek V, Mendrinna A, Gaude N, Krajinski F, Devers EA.

BMC Plant Biol. 2014 Jul 23;14:199. doi: 10.1186/s12870-014-0199-1.

7.

The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.

Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK.

Plant Cell. 2013 Sep;25(9):3584-601. doi: 10.1105/tpc.113.114017. Epub 2013 Sep 30.

8.

Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.

Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ.

BMC Plant Biol. 2009 Jan 22;9:10. doi: 10.1186/1471-2229-9-10.

9.

Transcriptome analysis of a bacterially induced basal and hypersensitive response of Medicago truncatula.

Bozsó Z, Maunoury N, Szatmari A, Mergaert P, Ott PG, Zsíros LR, Szabó E, Kondorosi E, Klement Z.

Plant Mol Biol. 2009 Aug;70(6):627-46. doi: 10.1007/s11103-009-9496-8. Epub 2009 May 24.

PMID:
19466566
10.

Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread.

Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H.

Plant Physiol. 2011 Dec;157(4):2023-43. doi: 10.1104/pp.111.186635. Epub 2011 Oct 27.

11.

The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G.

J Proteomics. 2014 Aug 28;108:354-68. doi: 10.1016/j.jprot.2014.05.028. Epub 2014 Jun 10.

PMID:
24925269
12.

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi.

Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D.

Mol Plant. 2012 Nov;5(6):1346-58. doi: 10.1093/mp/sss079. Epub 2012 Aug 28.

13.

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

Seddas PM, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V.

Mol Plant Microbe Interact. 2009 Mar;22(3):341-51. doi: 10.1094/MPMI-22-3-0341.

14.

Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection.

Shen C, Yue R, Bai Y, Feng R, Sun T, Wang X, Yang Y, Tie S, Wang H.

Plant Cell Physiol. 2015 Oct;56(10):1930-43. doi: 10.1093/pcp/pcv113. Epub 2015 Jul 29.

PMID:
26228273
16.

Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress.

Casieri L, Gallardo K, Wipf D.

Planta. 2012 Jun;235(6):1431-47. doi: 10.1007/s00425-012-1645-7. Epub 2012 Apr 26.

PMID:
22535379
17.

miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.

Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C.

Plant J. 2013 Jun;74(6):920-34. doi: 10.1111/tpj.12178. Epub 2013 May 3.

18.

A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula.

Yendrek CR, Lee YC, Morris V, Liang Y, Pislariu CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R.

Plant J. 2010 Apr 1;62(1):100-12. doi: 10.1111/j.1365-313X.2010.04134.x. Epub 2010 Jan 20.

19.

Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.

El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernié T, Gough C, Niebel A, Godiard L, Gamas P.

Plant Physiol. 2004 Oct;136(2):3159-76. Epub 2004 Oct 1.

20.

The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula.

Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA.

J Exp Bot. 2013 Dec;64(17):5395-409. doi: 10.1093/jxb/ert369.

PMID:
24259455

Supplemental Content

Support Center