Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Variable optical activation of human cone photoreceptors visualized using a short coherence light source.

Rha J, Schroeder B, Godara P, Carroll J.

Opt Lett. 2009 Dec 15;34(24):3782-4. doi: 10.1364/OL.34.003782.

2.

Wavelength and intensity dependence of retinal evoked responses using in vivo optic nerve recording.

Finn WE, LoPresti PG.

IEEE Trans Neural Syst Rehabil Eng. 2003 Dec;11(4):372-6.

PMID:
14960112
3.

A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus.

Allen AE, Brown TM, Lucas RJ.

J Neurosci. 2011 Nov 16;31(46):16833-43. doi: 10.1523/JNEUROSCI.2505-11.2011.

4.

Photovoltage of rods and cones in the macaque retina.

Schneeweis DM, Schnapf JL.

Science. 1995 May 19;268(5213):1053-6.

PMID:
7754386
5.

Treatment with 670-nm light protects the cone photoreceptors from white light-induced degeneration.

Albarracin RS, Valter K.

Adv Exp Med Biol. 2012;723:121-8. doi: 10.1007/978-1-4614-0631-0_17. No abstract available.

PMID:
22183324
6.

Retinal bipolar cells: temporal filtering of signals from cone photoreceptors.

Burkhardt DA, Fahey PK, Sikora MA.

Vis Neurosci. 2007 Nov-Dec;24(6):765-74.

PMID:
18093365
7.

Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram.

Friedburg C, Allen CP, Mason PJ, Lamb TD.

J Physiol. 2004 May 1;556(Pt 3):819-34. Epub 2004 Feb 27.

8.

Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans.

Gooley JJ, Ho Mien I, St Hilaire MA, Yeo SC, Chua EC, van Reen E, Hanley CJ, Hull JT, Czeisler CA, Lockley SW.

J Neurosci. 2012 Oct 10;32(41):14242-53. doi: 10.1523/JNEUROSCI.1321-12.2012.

9.

Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors.

Bruce KS, Harmening WM, Langston BR, Tuten WS, Roorda A, Sincich LC.

Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4431-8. doi: 10.1167/iovs.15-16547.

11.

Differential attentional modulation of cortical responses to S-cone and luminance stimuli.

Wang J, Wade AR.

J Vis. 2011 May 4;11(6):1. doi: 10.1167/11.6.1.

PMID:
21543524
12.
13.

Relative number of long- and middle-wavelength-sensitive cones in the human fovea.

Krauskopf J.

J Opt Soc Am A Opt Image Sci Vis. 2000 Mar;17(3):510-6.

PMID:
10708032
14.

Intrinsic signals from human cone photoreceptors.

Grieve K, Roorda A.

Invest Ophthalmol Vis Sci. 2008 Feb;49(2):713-9. doi: 10.1167/iovs.07-0837.

PMID:
18235019
15.

The reflectance of single cones in the living human eye.

Pallikaris A, Williams DR, Hofer H.

Invest Ophthalmol Vis Sci. 2003 Oct;44(10):4580-92.

PMID:
14507907
16.

Light-driven calcium signals in mouse cone photoreceptors.

Wei T, Schubert T, Paquet-Durand F, Tanimoto N, Chang L, Koeppen K, Ott T, Griesbeck O, Seeliger MW, Euler T, Wissinger B.

J Neurosci. 2012 May 16;32(20):6981-94. doi: 10.1523/JNEUROSCI.6432-11.2012.

17.

Human Visual Cortex Responses to Rapid Cone and Melanopsin-Directed Flicker.

Spitschan M, Datta R, Stern AM, Brainard DH, Aguirre GK.

J Neurosci. 2016 Feb 3;36(5):1471-82. doi: 10.1523/JNEUROSCI.1932-15.2016.

18.

Comparable effects of flickering and steady patterns of light adaptation on photomechanical responses of cones in amphibian (Xenopus laevis) retina.

Angotzi AR, Hirano J, Haamedi S, Murgia R, Vallerga S, Djamgoz MB.

Neurosci Lett. 1999 Sep 17;272(3):163-6.

PMID:
10505606
19.

EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors.

Korenbrot JI, Mehta M, Tserentsoodol N, Postlethwait JH, Rebrik TI.

J Neurosci. 2013 Nov 6;33(45):17763-76. doi: 10.1523/JNEUROSCI.2659-13.2013.

20.

Blue-yellow opponency in primate S cone photoreceptors.

Packer OS, Verweij J, Li PH, Schnapf JL, Dacey DM.

J Neurosci. 2010 Jan 13;30(2):568-72. doi: 10.1523/JNEUROSCI.4738-09.2010.

Supplemental Content

Support Center