Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Feasibility of an activity protocol for young children in a whole room indirect calorimeter: a proof-of-concept study.

Oortwijn AW, Plasqui G, Reilly JJ, Okely AD.

J Phys Act Health. 2009 Sep;6(5):633-7.

PMID:
19953840
2.

Predictive validity of three ActiGraph energy expenditure equations for children.

Trost SG, Way R, Okely AD.

Med Sci Sports Exerc. 2006 Feb;38(2):380-7.

PMID:
16531910
3.

Determinants of fat mass in prepubertal children.

Müller MJ, Grund A, Krause H, Siewers M, Bosy-Westphal A, Rieckert H.

Br J Nutr. 2002 Nov;88(5):545-54.

PMID:
12425735
4.

Prediction of activity energy expenditure using accelerometers in children.

Puyau MR, Adolph AL, Vohra FA, Zakeri I, Butte NF.

Med Sci Sports Exerc. 2004 Sep;36(9):1625-31.

PMID:
15354047
5.

Validation and calibration of physical activity monitors in children.

Puyau MR, Adolph AL, Vohra FA, Butte NF.

Obes Res. 2002 Mar;10(3):150-7. Erratum in: Obes Res. 2006 Mar;14(3):528.

6.

Tracmor system for measuring walking energy expenditure.

Levine J, Melanson EL, Westerterp KR, Hill JO.

Eur J Clin Nutr. 2003 Sep;57(9):1176-80.

PMID:
12947439
7.

Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.

Bray MS, Wong WW, Morrow JR Jr, Butte NF, Pivarnik JM.

Med Sci Sports Exerc. 1994 Dec;26(12):1524-30.

PMID:
7869888
8.

Energy expenditure determined by self-reported physical activity is related to body fatness.

Buchowski MS, Townsend KM, Chen KY, Acra SA, Sun M.

Obes Res. 1999 Jan;7(1):23-33.

9.

Triaxial accelerometry for assessment of physical activity in young children.

Tanaka C, Tanaka S, Kawahara J, Midorikawa T.

Obesity (Silver Spring). 2007 May;15(5):1233-41.

10.

Evaluation of low-intensity physical activity by triaxial accelerometry.

Midorikawa T, Tanaka S, Kaneko K, Koizumi K, Ishikawa-Takata K, Futami J, Tabata I.

Obesity (Silver Spring). 2007 Dec;15(12):3031-8. doi: 10.1038/oby.2007.361.

11.

Validation of the ActiGraph two-regression model for predicting energy expenditure.

Rothney MP, Brychta RJ, Meade NN, Chen KY, Buchowski MS.

Med Sci Sports Exerc. 2010 Sep;42(9):1785-92. doi: 10.1249/MSS.0b013e3181d5a984.

13.

Validation and calibration of an accelerometer in preschool children.

Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M.

Obesity (Silver Spring). 2006 Nov;14(11):2000-6.

14.

Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.

de Jonge L, Nguyen T, Smith SR, Zachwieja JJ, Roy HJ, Bray GA.

Int J Obes Relat Metab Disord. 2001 Jul;25(7):929-34.

PMID:
11443488
15.

Assessing sleeping energy expenditure in children using heart-rate monitoring calibrated against open-circuit indirect calorimetry: a pilot study.

Beghin L, Michaud L, Guimber D, Vaksmann G, Turck D, Gottrand F.

Br J Nutr. 2002 Nov;88(5):533-43.

PMID:
12425734
16.
17.

Comparison of accelerometer cut points for predicting activity intensity in youth.

Trost SG, Loprinzi PD, Moore R, Pfeiffer KA.

Med Sci Sports Exerc. 2011 Jul;43(7):1360-8. doi: 10.1249/MSS.0b013e318206476e.

PMID:
21131873
18.

Validation of Actigraph accelerometer estimates of total energy expenditure in young children.

Reilly JJ, Kelly LA, Montgomery C, Jackson DM, Slater C, Grant S, Paton JY.

Int J Pediatr Obes. 2006;1(3):161-7.

PMID:
17899634
19.

Comparison of methods for achieving 24-hour energy balance in a whole-room indirect calorimeter.

Grunwald GK, Melanson EL, Forster JE, Seagle HM, Sharp TA, Hill JO.

Obes Res. 2003 Jun;11(6):752-9.

20.

Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.

Wetten AA, Batterham M, Tan SY, Tapsell L.

J Phys Act Health. 2014 Mar;11(3):638-47. doi: 10.1123/jpah.2011-0167. Epub 2013 Feb 8.

PMID:
23417054

Supplemental Content

Support Center