Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules.

Needleman DJ, Groen A, Ohi R, Maresca T, Mirny L, Mitchison T.

Mol Biol Cell. 2010 Jan 15;21(2):323-33. doi: 10.1091/mbc.E09-09-0816. Epub 2009 Nov 25.

2.

Nucleation and transport organize microtubules in metaphase spindles.

Brugués J, Nuzzo V, Mazur E, Needleman DJ.

Cell. 2012 Apr 27;149(3):554-64. doi: 10.1016/j.cell.2012.03.027.

3.

Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle.

Yang G, Cameron LA, Maddox PS, Salmon ED, Danuser G.

J Cell Biol. 2008 Aug 25;182(4):631-9. doi: 10.1083/jcb.200801105. Epub 2008 Aug 18.

4.

Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2.

Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD.

Cell. 2013 Feb 14;152(4):768-77. doi: 10.1016/j.cell.2012.12.044.

5.

A new method reveals microtubule minus ends throughout the meiotic spindle.

Burbank KS, Groen AC, Perlman ZE, Fisher DS, Mitchison TJ.

J Cell Biol. 2006 Nov 6;175(3):369-75.

6.

Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles.

Uteng M, Hentrich C, Miura K, Bieling P, Surrey T.

J Cell Biol. 2008 Aug 25;182(4):715-26. doi: 10.1083/jcb.200801125. Epub 2008 Aug 18.

7.

Mature Drosophila meiosis I spindles comprise microtubules of mixed polarity.

Liang ZY, Hallen MA, Endow SA.

Curr Biol. 2009 Jan 27;19(2):163-8. doi: 10.1016/j.cub.2008.12.017.

8.

Anastral spindle assembly and γ-tubulin in Drosophila oocytes.

Endow SA, Hallen MA.

BMC Cell Biol. 2011 Jan 5;12:1. doi: 10.1186/1471-2121-12-1.

9.

Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation.

Ohi R, Sapra T, Howard J, Mitchison TJ.

Mol Biol Cell. 2004 Jun;15(6):2895-906. Epub 2004 Apr 2.

10.

Microtubule plus-end dynamics in Xenopus egg extract spindles.

Tirnauer JS, Salmon ED, Mitchison TJ.

Mol Biol Cell. 2004 Apr;15(4):1776-84. Epub 2004 Feb 6.

11.

Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle.

Houghtaling BR, Yang G, Matov A, Danuser G, Kapoor TM.

Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15338-43. doi: 10.1073/pnas.0902317106. Epub 2009 Aug 19.

12.
13.

Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts.

Petry S, Pugieux C, Nédélec FJ, Vale RD.

Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14473-8. doi: 10.1073/pnas.1110412108. Epub 2011 Aug 15.

14.

The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles.

Miyamoto DT, Perlman ZE, Burbank KS, Groen AC, Mitchison TJ.

J Cell Biol. 2004 Dec 6;167(5):813-8.

15.

A computational model predicts Xenopus meiotic spindle organization.

Loughlin R, Heald R, Nédélec F.

J Cell Biol. 2010 Dec 27;191(7):1239-49. doi: 10.1083/jcb.201006076. Epub 2010 Dec 20.

16.

Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles.

Mitchison TJ, Maddox P, Gaetz J, Groen A, Shirasu M, Desai A, Salmon ED, Kapoor TM.

Mol Biol Cell. 2005 Jun;16(6):3064-76. Epub 2005 Mar 23.

18.

Poleward microtubule flux mitotic spindles assembled in vitro.

Sawin KE, Mitchison TJ.

J Cell Biol. 1991 Mar;112(5):941-54.

19.

CaM kinase II initiates meiotic spindle depolymerization independently of APC/C activation.

Reber S, Over S, Kronja I, Gruss OJ.

J Cell Biol. 2008 Dec 15;183(6):1007-17. doi: 10.1083/jcb.200807006. Epub 2008 Dec 8.

Supplemental Content

Support Center