Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator.

Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L.

Biodegradation. 2010 Jun;21(3):431-9. doi: 10.1007/s10532-009-9313-8. Epub 2009 Nov 24.

2.

Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134.

Sánchez MA, González B.

Appl Environ Microbiol. 2007 May;73(9):2769-76. Epub 2007 Feb 23.

3.

Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134.

Belchik SM, Xun L.

J Bacteriol. 2008 Mar;190(5):1615-9. doi: 10.1128/JB.01697-07. Epub 2007 Dec 28.

4.
5.

Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134.

Pérez-Pantoja D, Donoso RA, Sánchez MA, González B.

Microbiology. 2009 Nov;155(Pt 11):3641-51. doi: 10.1099/mic.0.032086-0. Epub 2009 Aug 14.

PMID:
19684066
6.
7.

The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

Lykidis A, Pérez-Pantoja D, Ledger T, Mavromatis K, Anderson IJ, Ivanova NN, Hooper SD, Lapidus A, Lucas S, González B, Kyrpides NC.

PLoS One. 2010 Mar 22;5(3):e9729. doi: 10.1371/journal.pone.0009729.

8.

Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.

Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B.

FEMS Microbiol Rev. 2008 Aug;32(5):736-94. doi: 10.1111/j.1574-6976.2008.00122.x. Epub 2008 Aug 7. Review.

9.

Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134.

Manzano M, Morán AC, Tesser B, González B.

Antonie Van Leeuwenhoek. 2007 Feb;91(2):115-26.

PMID:
17043913
10.
11.

Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways.

Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Pérez-Pantoja D, Sánchez MA, Stuardo M, González B.

Environ Microbiol. 2004 Jul;6(7):655-68.

PMID:
15186344
12.

Strict and direct transcriptional repression of the pobA gene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacterium Cupriavidus necator JMP134.

Donoso RA, Pérez-Pantoja D, González B.

Environ Microbiol. 2011 Jun;13(6):1590-600. doi: 10.1111/j.1462-2920.2011.02470.x. Epub 2011 Mar 30.

PMID:
21450007
13.

From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

Berezina N, Yada B, Lefebvre R.

N Biotechnol. 2015 Jan 25;32(1):47-53. doi: 10.1016/j.nbt.2014.09.003. Epub 2014 Sep 22.

PMID:
25252021
14.

Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222.

Padilla L, Matus V, Zenteno P, González B.

J Basic Microbiol. 2000;40(4):243-9.

PMID:
10986670
15.
16.

Structures of the inducer-binding domain of pentachlorophenol-degrading gene regulator PcpR from Sphingobium chlorophenolicum.

Hayes RP, Moural TW, Lewis KM, Onofrei D, Xun L, Kang C.

Int J Mol Sci. 2014 Nov 12;15(11):20736-52. doi: 10.3390/ijms151120736.

17.

3-Chlorobenzoate is taken up by a chromosomally encoded transport system in Cupriavidus necator JMP134.

Ledger T, Aceituno F, González B.

Microbiology. 2009 Aug;155(Pt 8):2757-65. doi: 10.1099/mic.0.029207-0. Epub 2009 May 7.

PMID:
19423632
19.
20.

Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134.

Yin Y, Zhou NY.

Curr Microbiol. 2010 Nov;61(5):471-6. doi: 10.1007/s00284-010-9640-3. Epub 2010 Apr 13.

PMID:
20386911

Supplemental Content

Support Center