Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis.

Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR.

Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20687-92. doi: 10.1073/pnas.0907398106. Epub 2009 Nov 20.

2.

Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase.

Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z.

J Mol Biol. 2008 Feb 15;376(2):453-65. doi: 10.1016/j.jmb.2007.11.069. Epub 2007 Nov 28.

PMID:
18164311
3.

Substrate analog studies of the ω-regiospecificity of Mycobacterium tuberculosis cholesterol metabolizing cytochrome P450 enzymes CYP124A1, CYP125A1 and CYP142A1.

Johnston JB, Singh AA, Clary AA, Chen CK, Hayes PY, Chow S, De Voss JJ, Ortiz de Montellano PR.

Bioorg Med Chem. 2012 Jul 1;20(13):4064-81. doi: 10.1016/j.bmc.2012.05.003. Epub 2012 May 11.

4.

The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection.

McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW.

J Biol Chem. 2009 Dec 18;284(51):35524-33. doi: 10.1074/jbc.M109.032706.

5.

Crystal structure of Mycobacterium tuberculosis ketol-acid reductoisomerase at 1.0 Å resolution - a potential target for anti-tuberculosis drug discovery.

Lv Y, Kandale A, Wun SJ, McGeary RP, Williams SJ, Kobe B, Sieber V, Schembri MA, Schenk G, Guddat LW.

FEBS J. 2016 Apr;283(7):1184-96. doi: 10.1111/febs.13672. Epub 2016 Feb 18.

6.

A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism.

Dresen C, Lin LY, D'Angelo I, Tocheva EI, Strynadka N, Eltis LD.

J Biol Chem. 2010 Jul 16;285(29):22264-75. doi: 10.1074/jbc.M109.099028. Epub 2010 May 6.

7.

Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen.

Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SE, Leys D, Munro AW.

J Biol Chem. 2010 Dec 3;285(49):38270-82. doi: 10.1074/jbc.M110.164293. Epub 2010 Sep 30.

8.

Structural control of cytochrome P450-catalyzed ω-hydroxylation.

Johnston JB, Ouellet H, Podust LM, Ortiz de Montellano PR.

Arch Biochem Biophys. 2011 Mar 1;507(1):86-94. doi: 10.1016/j.abb.2010.08.011. Epub 2010 Aug 19. Review.

9.

Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1.

Kühnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I.

Biochemistry. 2008 Jun 24;47(25):6552-9. doi: 10.1021/bi800328s.

PMID:
18512957
10.

Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121: insights from biochemical studies and crystal structures.

Fonvielle M, Le Du MH, Lequin O, Lecoq A, Jacquet M, Thai R, Dubois S, Grach G, Gondry M, Belin P.

J Biol Chem. 2013 Jun 14;288(24):17347-59. doi: 10.1074/jbc.M112.443853. Epub 2013 Apr 25.

11.

Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis.

Due AV, Kuper J, Geerlof A, von Kries JP, Wilmanns M.

Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3554-9. doi: 10.1073/pnas.1015996108. Epub 2011 Feb 14.

12.

Structural and computational dissection of the catalytic mechanism of the inorganic pyrophosphatase from Mycobacterium tuberculosis.

Pratt AC, Dewage SW, Pang AH, Biswas T, Barnard-Britson S, Cisneros GA, Tsodikov OV.

J Struct Biol. 2015 Oct;192(1):76-87. doi: 10.1016/j.jsb.2015.08.010. Epub 2015 Aug 19.

PMID:
26296329
13.

Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

Gupta V, Gupta RK, Khare G, Salunke DM, Surolia A, Tyagi AK.

PLoS One. 2010 Feb 15;5(2):e9222. doi: 10.1371/journal.pone.0009222.

14.

Characterization of phytanic acid omega-hydroxylation in human liver microsomes.

Komen JC, Duran M, Wanders RJ.

Mol Genet Metab. 2005 Jul;85(3):190-5. Epub 2005 Mar 17.

PMID:
15979030
15.

Crystal structure of Mycobacterium tuberculosis polyketide synthase 11 (PKS11) reveals intermediates in the synthesis of methyl-branched alkylpyrones.

Gokulan K, O'Leary SE, Russell WK, Russell DH, Lalgondar M, Begley TP, Ioerger TR, Sacchettini JC.

J Biol Chem. 2013 Jun 7;288(23):16484-94. doi: 10.1074/jbc.M113.468892. Epub 2013 Apr 24.

16.

The three-dimensional structure of N-succinyldiaminopimelate aminotransferase from Mycobacterium tuberculosis.

Weyand S, Kefala G, Weiss MS.

J Mol Biol. 2007 Mar 30;367(3):825-38. Epub 2007 Jan 12.

PMID:
17292400
17.

Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis.

Dym O, Albeck S, Peleg Y, Schwarz A, Shakked Z, Burstein Y, Zimhony O.

J Mol Biol. 2009 Nov 6;393(4):937-50. doi: 10.1016/j.jmb.2009.08.065. Epub 2009 Sep 3.

PMID:
19733180
18.
19.

Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from Mycobacterium tuberculosis.

Cookson TV, Castell A, Bulloch EM, Evans GL, Short FL, Baker EN, Lott JS, Parker EJ.

Biochem J. 2014 Jul 1;461(1):87-98. doi: 10.1042/BJ20140209.

PMID:
24712732
20.

Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study.

Chaitanya M, Babajan B, Anuradha CM, Naveen M, Rajasekhar C, Madhusudana P, Kumar CS.

J Mol Model. 2010 Aug;16(8):1357-67. doi: 10.1007/s00894-010-0653-4. Epub 2010 Feb 7.

PMID:
20140471

Supplemental Content

Support Center