Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.

Kanelis V, Hudson RP, Thibodeau PH, Thomas PJ, Forman-Kay JD.

EMBO J. 2010 Jan 6;29(1):263-77. doi: 10.1038/emboj.2009.329. Epub 2009 Nov 19.

2.

Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR.

Aleksandrov AA, Kota P, Aleksandrov LA, He L, Jensen T, Cui L, Gentzsch M, Dokholyan NV, Riordan JR.

J Mol Biol. 2010 Aug 13;401(2):194-210. doi: 10.1016/j.jmb.2010.06.019. Epub 2010 Jun 16.

3.

Allosteric coupling between the intracellular coupling helix 4 and regulatory sites of the first nucleotide-binding domain of CFTR.

Dawson JE, Farber PJ, Forman-Kay JD.

PLoS One. 2013 Sep 18;8(9):e74347. doi: 10.1371/journal.pone.0074347. eCollection 2013.

4.

The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.

Jih KY, Li M, Hwang TC, Bompadre SG.

J Physiol. 2011 Jun 1;589(Pt 11):2719-31. doi: 10.1113/jphysiol.2010.202861. Epub 2011 Apr 11.

5.

Human-mouse cystic fibrosis transmembrane conductance regulator (CFTR) chimeras identify regions that partially rescue CFTR-ΔF508 processing and alter its gating defect.

Dong Q, Ostedgaard LS, Rogers C, Vermeer DW, Zhang Y, Welsh MJ.

Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):917-22. doi: 10.1073/pnas.1120065109. Epub 2011 Dec 30.

6.

Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly.

He L, Aleksandrov AA, An J, Cui L, Yang Z, Brouillette CG, Riordan JR.

J Mol Biol. 2015 Jan 16;427(1):106-20. doi: 10.1016/j.jmb.2014.07.026. Epub 2014 Jul 30.

7.

Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.

Csanády L, Chan KW, Nairn AC, Gadsby DC.

J Gen Physiol. 2005 Jan;125(1):43-55. Epub 2004 Dec 13.

8.
9.

CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices.

Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD.

Nat Struct Mol Biol. 2007 Aug;14(8):738-45. Epub 2007 Jul 29.

10.

On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.

Belmonte L, Moran O.

Biochimie. 2015 Apr;111:19-29. doi: 10.1016/j.biochi.2015.01.010. Epub 2015 Jan 30.

PMID:
25640670
11.

Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.

Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S.

J Biol Chem. 2005 Jan 14;280(2):1346-53. Epub 2004 Nov 3.

12.

Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains.

Csanády L, Chan KW, Seto-Young D, Kopsco DC, Nairn AC, Gadsby DC.

J Gen Physiol. 2000 Sep;116(3):477-500.

13.

Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.

Odolczyk N, Fritsch J, Norez C, Servel N, da Cunha MF, Bitam S, Kupniewska A, Wiszniewski L, Colas J, Tarnowski K, Tondelier D, Roldan A, Saussereau EL, Melin-Heschel P, Wieczorek G, Lukacs GL, Dadlez M, Faure G, Herrmann H, Ollero M, Becq F, Zielenkiewicz P, Edelman A.

EMBO Mol Med. 2013 Oct;5(10):1484-501. doi: 10.1002/emmm.201302699. Epub 2013 Aug 27.

14.
15.

NMR spectroscopy to study the dynamics and interactions of CFTR.

Kanelis V, Chong PA, Forman-Kay JD.

Methods Mol Biol. 2011;741:377-403. doi: 10.1007/978-1-61779-117-8_25.

PMID:
21594798
16.

Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.

Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S.

EMBO J. 2004 Jan 28;23(2):282-93. Epub 2003 Dec 18.

17.

Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.

Hall JD, Wang H, Byrnes LJ, Shanker S, Wang K, Efremov IV, Chong PA, Forman-Kay JD, Aulabaugh AE.

Protein Sci. 2016 Feb;25(2):360-73. doi: 10.1002/pro.2821. Epub 2016 Jan 12.

18.

Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function.

Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL.

Cell. 2012 Jan 20;148(1-2):150-63. doi: 10.1016/j.cell.2011.11.024.

19.

Deletion of Phenylalanine 508 in the First Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization.

Chong PA, Farber PJ, Vernon RM, Hudson RP, Mittermaier AK, Forman-Kay JD.

J Biol Chem. 2015 Sep 18;290(38):22862-78. doi: 10.1074/jbc.M115.641134. Epub 2015 Jul 6.

20.

Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.

Howell LD, Borchardt R, Kole J, Kaz AM, Randak C, Cohn JA.

Biochem J. 2004 Feb 15;378(Pt 1):151-9.

Supplemental Content

Support Center