Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

Correlation of microsynteny conservation and disease gene distribution in mammalian genomes.

Lovell SC, Li X, Weerasinghe NR, Hentges KE.

BMC Genomics. 2009 Nov 12;10:521. doi: 10.1186/1471-2164-10-521.

2.

Genomic regulatory blocks underlie extensive microsynteny conservation in insects.

Engström PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B.

Genome Res. 2007 Dec;17(12):1898-908. Epub 2007 Nov 7.

3.

Ultraconserved elements: genomics, function and disease.

Baira E, Greshock J, Coukos G, Zhang L.

RNA Biol. 2008 Jul-Sep;5(3):132-4. Epub 2008 Jul 25. Review.

PMID:
18708752
4.

Conserved synteny of mammalian imprinted genes in chicken, frog, and fish genomes.

Dünzinger U, Haaf T, Zechner U.

Cytogenet Genome Res. 2007;117(1-4):78-85.

PMID:
17675847
5.

Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention.

Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G.

Genome Res. 2009 Nov;19(11):2036-51. doi: 10.1101/gr.093237.109. Epub 2009 Aug 24.

6.
7.

Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs.

Chiba H, Yamashita R, Kinoshita K, Nakai K.

BMC Genomics. 2008 Apr 2;9:152. doi: 10.1186/1471-2164-9-152.

8.

Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.

Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X.

Hum Mol Genet. 2003 Sep 1;12(17):2201-8. Epub 2003 Jul 8.

PMID:
12915466
9.

Genomic regions with distinct genomic distance conservation in vertebrate genomes.

Sun H, Skogerbø G, Zheng X, Liu W, Li Y.

BMC Genomics. 2009 Mar 27;10:133. doi: 10.1186/1471-2164-10-133.

10.

Comparative genomics on Fgf11 orthologs.

Katoh Y, Katoh M.

Oncol Rep. 2005 Jul;14(1):291-4.

PMID:
15944803
11.

A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome.

Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R, Halpern A, Li PW, Sutton GG, Nadeau J, Salzberg SL, Holt RA, Kodira CD, Lu F, Chen L, Deng Z, Evangelista CC, Gan W, Heiman TJ, Li J, Li Z, Merkulov GV, Milshina NV, Naik AK, Qi R, Shue BC, Wang A, Wang J, Wang X, Yan X, Ye J, Yooseph S, Zhao Q, Zheng L, Zhu SC, Biddick K, Bolanos R, Delcher AL, Dew IM, Fasulo D, Flanigan MJ, Huson DH, Kravitz SA, Miller JR, Mobarry CM, Reinert K, Remington KA, Zhang Q, Zheng XH, Nusskern DR, Lai Z, Lei Y, Zhong W, Yao A, Guan P, Ji RR, Gu Z, Wang ZY, Zhong F, Xiao C, Chiang CC, Yandell M, Wortman JR, Amanatides PG, Hladun SL, Pratts EC, Johnson JE, Dodson KL, Woodford KJ, Evans CA, Gropman B, Rusch DB, Venter E, Wang M, Smith TJ, Houck JT, Tompkins DE, Haynes C, Jacob D, Chin SH, Allen DR, Dahlke CE, Sanders R, Li K, Liu X, Levitsky AA, Majoros WH, Chen Q, Xia AC, Lopez JR, Donnelly MT, Newman MH, Glodek A, Kraft CL, Nodell M, Ali F, An HJ, Baldwin-Pitts D, Beeson KY, Cai S, Carnes M, Carver A, Caulk PM, Center A, Chen YH, Cheng ML, Coyne MD, Crowder M, Danaher S, Davenport LB, Desilets R, Dietz SM, Doup L, Dullaghan P, Ferriera S, Fosler CR, Gire HC, Gluecksmann A, Gocayne JD, Gray J, Hart B, Haynes J, Hoover J, Howland T, Ibegwam C, Jalali M, Johns D, Kline L, Ma DS, MacCawley S, Magoon A, Mann F, May D, McIntosh TC, Mehta S, Moy L, Moy MC, Murphy BJ, Murphy SD, Nelson KA, Nuri Z, Parker KA, Prudhomme AC, Puri VN, Qureshi H, Raley JC, Reardon MS, Regier MA, Rogers YH, Romblad DL, Schutz J, Scott JL, Scott R, Sitter CD, Smallwood M, Sprague AC, Stewart E, Strong RV, Suh E, Sylvester K, Thomas R, Tint NN, Tsonis C, Wang G, Wang G, Williams MS, Williams SM, Windsor SM, Wolfe K, Wu MM, Zaveri J, Chaturvedi K, Gabrielian AE, Ke Z, Sun J, Subramanian G, Venter JC, Pfannkoch CM, Barnstead M, Stephenson LD.

Science. 2002 May 31;296(5573):1661-71. Erratum in: Science 2002 Aug 23;297(5585):1278. Science. 2004 Mar 12;303(5664):1612.

12.
13.

Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment.

Dermitzakis ET, Kirkness E, Schwarz S, Birney E, Reymond A, Antonarakis SE.

Genome Res. 2004 May;14(5):852-9. Epub 2004 Apr 12.

15.

Numerous potentially functional but non-genic conserved sequences on human chromosome 21.

Dermitzakis ET, Reymond A, Lyle R, Scamuffa N, Ucla C, Deutsch S, Stevenson BJ, Flegel V, Bucher P, Jongeneel CV, Antonarakis SE.

Nature. 2002 Dec 5;420(6915):578-82.

PMID:
12466853
16.

Segmental duplication density decrease with distance to human-mouse breaks of synteny.

Sainz J, Rovensky P, Gudjonsson SA, Thorleifsson G, Stefansson K, Gulcher JR.

Eur J Hum Genet. 2006 Feb;14(2):216-21.

17.

Comparative genomics on mammalian Fgf6-Fgf23 locus.

Katoh Y, Katoh M.

Int J Mol Med. 2005 Aug;16(2):355-8.

PMID:
16012775
18.

Murine segmental duplications are hot spots for chromosome and gene evolution.

Armengol L, Marquès-Bonet T, Cheung J, Khaja R, González JR, Scherer SW, Navarro A, Estivill X.

Genomics. 2005 Dec;86(6):692-700. Epub 2005 Oct 26.

19.

Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat.

Wu SV, Chen MC, Rozengurt E.

Physiol Genomics. 2005 Jul 14;22(2):139-49. Epub 2005 May 10.

Supplemental Content

Support Center