Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

2.
3.

Serine phosphorylation of NPM-ALK, which is dependent on the auto-activation of the kinase activation loop, contributes to its oncogenic potential.

Wang P, Wu F, Zhang J, McMullen T, Young LC, Ingham RJ, Li L, Lai R.

Carcinogenesis. 2011 Feb;32(2):146-53. doi: 10.1093/carcin/bgq229.

PMID:
21045017
4.

Identification and characterization of a nuclear interacting partner of anaplastic lymphoma kinase (NIPA).

Ouyang T, Bai RY, Bassermann F, von Klitzing C, Klumpen S, Miething C, Morris SW, Peschel C, Duyster J.

J Biol Chem. 2003 Aug 8;278(32):30028-36.

5.

Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase.

Tartari CJ, Gunby RH, Coluccia AM, Sottocornola R, Cimbro B, Scapozza L, Donella-Deana A, Pinna LA, Gambacorti-Passerini C.

J Biol Chem. 2008 Feb 15;283(7):3743-50.

7.
8.

Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain.

Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E, Gao MY, Hua S, Chen C, Kim S, Michellys PY, Lesley SA, Harris JL, Spraggon G.

Biochem J. 2010 Sep 15;430(3):425-37. doi: 10.1042/BJ20100609.

PMID:
20632993
9.

NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.

Bone KM, Wang P, Wu F, Wu C, Li L, Bacani JT, Andrew SE, Lai R.

Blood Cancer J. 2015 May 15;5:e311. doi: 10.1038/bcj.2015.35.

11.

Structural basis for the recognition of nucleophosmin-anaplastic lymphoma kinase oncoprotein by the phosphotyrosine binding domain of Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target-2.

Koshiba S, Li H, Motoda Y, Tomizawa T, Kasai T, Tochio N, Yabuki T, Harada T, Watanabe S, Tanaka A, Shirouzu M, Kigawa T, Yamamoto T, Yokoyama S.

J Struct Funct Genomics. 2010 Jun;11(2):125-41. doi: 10.1007/s10969-010-9091-x.

PMID:
20454865
12.

The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration.

Voena C, Conte C, Ambrogio C, Boeri Erba E, Boccalatte F, Mohammed S, Jensen ON, Palestro G, Inghirami G, Chiarle R.

Cancer Res. 2007 May 1;67(9):4278-86. Erratum in: Cancer Res. 2016 Mar 15;76(6):1669.

13.
15.

Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity.

Donella-Deana A, Marin O, Cesaro L, Gunby RH, Ferrarese A, Coluccia AM, Tartari CJ, Mologni L, Scapozza L, Gambacorti-Passerini C, Pinna LA.

Biochemistry. 2005 Jun 14;44(23):8533-42.

PMID:
15938644
17.

Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma.

Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N, Morris S, Skorski T, Wasik MA.

J Immunol. 2002 Jan 1;168(1):466-74.

18.

ALK mutants in the kinase domain exhibit altered kinase activity and differential sensitivity to small molecule ALK inhibitors.

Lu L, Ghose AK, Quail MR, Albom MS, Durkin JT, Holskin BP, Angeles TS, Meyer SL, Ruggeri BA, Cheng M.

Biochemistry. 2009 Apr 28;48(16):3600-9. doi: 10.1021/bi8020923.

PMID:
19249873
19.

Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5).

Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T.

Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4181-6.

20.

Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis.

Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA, Skorski T.

Cancer Res. 2001 Mar 1;61(5):2194-9.

Items per page

Supplemental Content

Support Center