Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113


Dephosphorylation of gamma H2A by Glc7/protein phosphatase 1 promotes recovery from inhibition of DNA replication.

Bazzi M, Mantiero D, Trovesi C, Lucchini G, Longhese MP.

Mol Cell Biol. 2010 Jan;30(1):131-45. doi: 10.1128/MCB.01000-09.


Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.

O'Neill BM, Szyjka SJ, Lis ET, Bailey AO, Yates JR 3rd, Aparicio OM, Romesberg FE.

Proc Natl Acad Sci U S A. 2007 May 29;104(22):9290-5. Epub 2007 May 21.


Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.

Szyjka SJ, Aparicio JG, Viggiani CJ, Knott S, Xu W, Tavaré S, Aparicio OM.

Genes Dev. 2008 Jul 15;22(14):1906-20. doi: 10.1101/gad.1660408.


Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.

Travesa A, Duch A, Quintana DG.

J Biol Chem. 2008 Jun 20;283(25):17123-30. doi: 10.1074/jbc.M801402200. Epub 2008 Apr 25.


H2B mono-ubiquitylation facilitates fork stalling and recovery during replication stress by coordinating Rad53 activation and chromatin assembly.

Lin CY, Wu MY, Gay S, Marjavaara L, Lai MS, Hsiao WC, Hung SH, Tseng HY, Wright DE, Wang CY, Hsu GS, Devys D, Chabes A, Kao CF.

PLoS Genet. 2014 Oct 2;10(10):e1004667. doi: 10.1371/journal.pgen.1004667. eCollection 2014 Oct.


Damage-induced phosphorylation of Sld3 is important to block late origin firing.

Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP.

Nature. 2010 Sep 23;467(7314):479-83. doi: 10.1038/nature09377.


Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae.

Guillemain G, Ma E, Mauger S, Miron S, Thai R, Guérois R, Ochsenbein F, Marsolier-Kergoat MC.

Mol Cell Biol. 2007 May;27(9):3378-89. Epub 2007 Feb 26.


Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells.

Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M.

Mol Cell. 2005 Jan 7;17(1):153-9.


Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations.

Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM.

Genes Dev. 2005 Dec 15;19(24):3055-69.


Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast.

Gangavarapu V, Santa Maria SR, Prakash S, Prakash L.

MBio. 2011 May 17;2(3):e00079-11. doi: 10.1128/mBio.00079-11. Print 2011.


DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.

Ohouo PY, Bastos de Oliveira FM, Liu Y, Ma CJ, Smolka MB.

Nature. 2013 Jan 3;493(7430):120-4. doi: 10.1038/nature11658. Epub 2012 Nov 18.


Molecular basis of the essential s phase function of the rad53 checkpoint kinase.

Hoch NC, Chen ES, Buckland R, Wang SC, Fazio A, Hammet A, Pellicioli A, Chabes A, Tsai MD, Heierhorst J.

Mol Cell Biol. 2013 Aug;33(16):3202-13. doi: 10.1128/MCB.00474-13. Epub 2013 Jun 10.


Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects.

Sogo JM, Lopes M, Foiani M.

Science. 2002 Jul 26;297(5581):599-602.


Genetic interaction of RAD53 protein kinase with histones is important for DNA replication.

Holzen TM, Sclafani R.

Cell Cycle. 2010 Dec 1;9(23):4735-47. Epub 2010 Dec 1.


Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation.

Bermejo R, Doksani Y, Capra T, Katou YM, Tanaka H, Shirahige K, Foiani M.

Genes Dev. 2007 Aug 1;21(15):1921-36.


The DNA replication checkpoint response stabilizes stalled replication forks.

Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M.

Nature. 2001 Aug 2;412(6846):557-61.


An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks.

Hegnauer AM, Hustedt N, Shimada K, Pike BL, Vogel M, Amsler P, Rubin SM, van Leeuwen F, Guénolé A, van Attikum H, Thomä NH, Gasser SM.

EMBO J. 2012 Sep 12;31(18):3768-83. doi: 10.1038/emboj.2012.195. Epub 2012 Jul 20.


Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling.

Javaheri A, Wysocki R, Jobin-Robitaille O, Altaf M, Côté J, Kron SJ.

Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13771-6. Epub 2006 Aug 29.


The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint.

Ogi H, Wang CZ, Nakai W, Kawasaki Y, Masumoto H.

Gene. 2008 May 15;414(1-2):32-40. doi: 10.1016/j.gene.2008.02.010. Epub 2008 Feb 21.


Supplemental Content

Support Center