Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays.

Starosta AL, Qin H, Mikolajka A, Leung GY, Schwinghammer K, Nicolaou KC, Chen DY, Cooperman BS, Wilson DN.

Chem Biol. 2009 Oct 30;16(10):1087-96. doi: 10.1016/j.chembiol.2009.09.016.

2.

GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.

Zuurmond AM, Martien de Graaf J, Olsthoorn-Tieleman LN, van Duyl BY, Mörhle VG, Jurnak F, Mesters JR, Hilgenfeld R, Kraal B.

J Mol Biol. 2000 Dec 15;304(5):995-1005.

PMID:
11124042
4.

Effects of the antibiotic pulvomycin on the elongation factor Tu-dependent reactions. Comparison with other antibiotics.

Anborgh PH, Okamura S, Parmeggiani A.

Biochemistry. 2004 Dec 14;43(49):15550-6.

PMID:
15581367
5.
6.

Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases.

Mikolajka A, Liu H, Chen Y, Starosta AL, Márquez V, Ivanova M, Cooperman BS, Wilson DN.

Chem Biol. 2011 May 27;18(5):589-600. doi: 10.1016/j.chembiol.2011.03.010.

7.

Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu.

Morris RP, Leeds JA, Naegeli HU, Oberer L, Memmert K, Weber E, LaMarche MJ, Parker CN, Burrer N, Esterow S, Hein AE, Schmitt EK, Krastel P.

J Am Chem Soc. 2009 Apr 29;131(16):5946-55. doi: 10.1021/ja900488a.

PMID:
19338336
8.

Chasing after antibiotic leads.

Geiermann AS, Micura R.

Chem Biol. 2009 Oct 30;16(10):1024-5. doi: 10.1016/j.chembiol.2009.10.001.

9.
10.
11.

Thiostrepton inhibition of tRNA delivery to the ribosome.

Gonzalez RL Jr, Chu S, Puglisi JD.

RNA. 2007 Dec;13(12):2091-7. Epub 2007 Oct 19.

12.

Structural basis for contrasting activities of ribosome binding thiazole antibiotics.

Lentzen G, Klinck R, Matassova N, Aboul-ela F, Murchie AI.

Chem Biol. 2003 Aug;10(8):769-78.

13.

Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin.

Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P.

Mol Cell. 2008 Apr 11;30(1):26-38. doi: 10.1016/j.molcel.2008.01.009.

14.

Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome.

Cameron DM, Thompson J, March PE, Dahlberg AE.

J Mol Biol. 2002 May 24;319(1):27-35.

PMID:
12051934
15.

Structural basis of the action of pulvomycin and GE2270 A on elongation factor Tu.

Parmeggiani A, Krab IM, Okamura S, Nielsen RC, Nyborg J, Nissen P.

Biochemistry. 2006 Jun 6;45(22):6846-57.

PMID:
16734421
16.

Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4.

Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC.

Nucleic Acids Res. 2012 Jan;40(1):360-70. doi: 10.1093/nar/gkr623. Epub 2011 Sep 9.

17.

Antimicrobial activities of chemically modified thiazolyl peptide antibiotic MDL 62,879 (GE2270A).

Lociuro S, Tavecchia P, Marzorati E, Landini P, Goldstein BP, Denaro M, Ciabatti R.

J Antibiot (Tokyo). 1997 Apr;50(4):344-9.

18.

Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation.

Wolf A, Baumann S, Arndt HD, Kirschner KN.

Bioorg Med Chem. 2012 Dec 15;20(24):7194-205. doi: 10.1016/j.bmc.2012.09.025. Epub 2012 Sep 22.

PMID:
23107668
20.

How can elongation factors EF-G and EF-Tu discriminate the functional state of the ribosome using the same binding site?

Sergiev PV, Bogdanov AA, Dontsova OA.

FEBS Lett. 2005 Oct 24;579(25):5439-42. Epub 2005 Sep 26. Review.

Supplemental Content

Support Center