Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

The Botrytis cinerea aspartic proteinase family.

ten Have A, Espino JJ, Dekkers E, Van Sluyter SC, Brito N, Kay J, González C, van Kan JA.

Fungal Genet Biol. 2010 Jan;47(1):53-65. doi: 10.1016/j.fgb.2009.10.008.

PMID:
19853057
2.

An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features.

ten Have A, Dekkers E, Kay J, Phylip LH, van Kan JA.

Microbiology. 2004 Jul;150(Pt 7):2475-89.

PMID:
15256589
3.

Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea.

Wubben JP, Mulder W, ten Have A, van Kan JA, Visser J.

Appl Environ Microbiol. 1999 Apr;65(4):1596-602.

4.

Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).

Del Sorbo G, Ruocco M, Schoonbeek HJ, Scala F, Pane C, Vinale F, De Waard MA.

Mycol Res. 2008 Jun;112(Pt 6):737-46. doi: 10.1016/j.mycres.2008.01.005. Epub 2008 Feb 3.

PMID:
18515055
5.

The FRP1 F-box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens.

Jonkers W, VAN Kan JA, Tijm P, Lee YW, Tudzynski P, Rep M, Michielse CB.

Mol Plant Pathol. 2011 Aug;12(6):548-63. doi: 10.1111/j.1364-3703.2010.00689.x. Epub 2011 Jan 5.

PMID:
21722294
6.

The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity.

Noda J, Brito N, González C.

BMC Plant Biol. 2010 Feb 25;10:38. doi: 10.1186/1471-2229-10-38.

7.

A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea.

Saitoh Y, Izumitsu K, Morita A, Tanaka C.

Mol Genet Genomics. 2010 Jul;284(1):33-43. doi: 10.1007/s00438-010-0545-4. Epub 2010 Jun 5.

PMID:
20526618
9.

Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking.

Van Sluyter SC, Warnock NI, Schmidt S, Anderson P, van Kan JA, Bacic A, Waters EJ.

J Agric Food Chem. 2013 Oct 9;61(40):9705-11. doi: 10.1021/jf402762k. Epub 2013 Sep 25.

PMID:
24007329
10.

pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea.

Rolland S, Bruel C, Rascle C, Girard V, Billon-Grand G, Poussereau N.

Microbiology. 2009 Jun;155(Pt 6):2097-105. doi: 10.1099/mic.0.025999-0. Epub 2009 Apr 9.

PMID:
19359322
11.

Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants.

Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M.

Mol Plant Microbe Interact. 2003 Apr;16(4):360-7.

12.

BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host.

Frías M, González C, Brito N.

New Phytol. 2011 Oct;192(2):483-95. doi: 10.1111/j.1469-8137.2011.03802.x. Epub 2011 Jun 27.

13.

The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea.

Zheng L, Campbell M, Murphy J, Lam S, Xu JR.

Mol Plant Microbe Interact. 2000 Jul;13(7):724-32.

14.

Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea.

Doehlemann G, Molitor F, Hahn M.

Fungal Genet Biol. 2005 Jul;42(7):601-10. Epub 2005 Apr 8.

PMID:
15950157
15.

Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a).

Soulié MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz C, Boccara M, Vidal-Cros A.

Cell Microbiol. 2006 Aug;8(8):1310-21.

PMID:
16882034
16.

The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea.

ten Have A, Mulder W, Visser J, van Kan JA.

Mol Plant Microbe Interact. 1998 Oct;11(10):1009-16.

17.

Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase.

Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JA.

Mol Microbiol. 2002 Feb;43(4):883-94.

18.

A family 11 xylanase from the pathogen Botrytis cinerea is inhibited by plant endoxylanase inhibitors XIP-I and TAXI-I.

Brutus A, Reca IB, Herga S, Mattei B, Puigserver A, Chaix JC, Juge N, Bellincampi D, Giardina T.

Biochem Biophys Res Commun. 2005 Nov 11;337(1):160-6.

PMID:
16185656
19.

BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.

Cui Z, Gao N, Wang Q, Ren Y, Wang K, Zhu T.

Curr Genet. 2015 Nov;61(4):545-53. doi: 10.1007/s00294-015-0474-1. Epub 2015 Jan 30.

PMID:
25634672
20.

Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties.

Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I.

Mol Plant Microbe Interact. 2003 Oct;16(10):876-83.

Supplemental Content

Support Center