Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.
2.

Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases.

Sundar IK, Yao H, Rahman I.

Antioxid Redox Signal. 2013 May 20;18(15):1956-71. doi: 10.1089/ars.2012.4863. Epub 2012 Nov 6. Review.

3.

Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD.

Rajendrasozhan S, Yang SR, Edirisinghe I, Yao H, Adenuga D, Rahman I.

Antioxid Redox Signal. 2008 Apr;10(4):799-811. doi: 10.1089/ars.2007.1938. Review.

4.

Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer.

Sundar IK, Rahman I.

Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1245-L1258. doi: 10.1152/ajplung.00253.2016. Epub 2016 Oct 28.

PMID:
27793800
5.

SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease.

Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I.

Am J Respir Crit Care Med. 2008 Apr 15;177(8):861-70. doi: 10.1164/rccm.200708-1269OC. Epub 2008 Jan 3.

6.

Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD.

Yao H, Rahman I.

Am J Physiol Lung Cell Mol Physiol. 2012 Oct 1;303(7):L557-66. doi: 10.1152/ajplung.00175.2012. Epub 2012 Jul 27. Review.

7.

Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2.

Meja KK, Rajendrasozhan S, Adenuga D, Biswas SK, Sundar IK, Spooner G, Marwick JA, Chakravarty P, Fletcher D, Whittaker P, Megson IL, Kirkham PA, Rahman I.

Am J Respir Cell Mol Biol. 2008 Sep;39(3):312-23. doi: 10.1165/rcmb.2008-0012OC. Epub 2008 Apr 17.

8.

Epigenetic regulation of airway inflammation.

Adcock IM, Tsaprouni L, Bhavsar P, Ito K.

Curr Opin Immunol. 2007 Dec;19(6):694-700. Epub 2007 Aug 27. Review.

PMID:
17720468
9.

IKK alpha causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung.

Yang SR, Valvo S, Yao H, Kode A, Rajendrasozhan S, Edirisinghe I, Caito S, Adenuga D, Henry R, Fromm G, Maggirwar S, Li JD, Bulger M, Rahman I.

Am J Respir Cell Mol Biol. 2008 Jun;38(6):689-98. doi: 10.1165/rcmb.2007-0379OC. Epub 2008 Jan 31.

10.

Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease.

Yao H, Rahman I.

Toxicol Appl Pharmacol. 2011 Jul 15;254(2):72-85. doi: 10.1016/j.taap.2009.10.022. Epub 2011 Feb 4. Review.

11.

Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κB-dependent genes.

Sundar IK, Chung S, Hwang JW, Lapek JD Jr, Bulger M, Friedman AE, Yao H, Davie JR, Rahman I.

PLoS One. 2012;7(2):e31378. doi: 10.1371/journal.pone.0031378. Epub 2012 Feb 1.

12.

Decreased histone deacetylase activity in chronic obstructive pulmonary disease.

Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ.

N Engl J Med. 2005 May 12;352(19):1967-76.

PMID:
15888697
13.

Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages.

Yang SR, Chida AS, Bauter MR, Shafiq N, Seweryniak K, Maggirwar SB, Kilty I, Rahman I.

Am J Physiol Lung Cell Mol Physiol. 2006 Jul;291(1):L46-57. Epub 2006 Feb 10.

14.

Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs.

Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I.

Am J Respir Cell Mol Biol. 2004 Dec;31(6):633-42. Epub 2004 Aug 27.

PMID:
15333327
15.

The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease.

Szulakowski P, Crowther AJ, Jiménez LA, Donaldson K, Mayer R, Leonard TB, MacNee W, Drost EM.

Am J Respir Crit Care Med. 2006 Jul 1;174(1):41-50. Epub 2006 Mar 30.

PMID:
16574938
16.

Histone deacetylation: an important mechanism in inflammatory lung diseases.

Adcock IM, Ito K, Barnes PJ.

COPD. 2005 Dec;2(4):445-55. Review.

PMID:
17147010
17.

Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease.

Barnes PJ.

Proc Am Thorac Soc. 2009 Dec;6(8):693-6. doi: 10.1513/pats.200907-071DP. Review.

PMID:
20008877
18.

Redox regulation of SIRT1 in inflammation and cellular senescence.

Hwang JW, Yao H, Caito S, Sundar IK, Rahman I.

Free Radic Biol Med. 2013 Aug;61:95-110. doi: 10.1016/j.freeradbiomed.2013.03.015. Epub 2013 Mar 27. Review.

19.

SIRT1 as a therapeutic target in inflammaging of the pulmonary disease.

Rahman I, Kinnula VL, Gorbunova V, Yao H.

Prev Med. 2012 May;54 Suppl:S20-8. doi: 10.1016/j.ypmed.2011.11.014. Epub 2011 Dec 8. Review.

20.

Linking epigenetics to lipid metabolism: focus on histone deacetylases.

Ferrari A, Fiorino E, Giudici M, Gilardi F, Galmozzi A, Mitro N, Cermenati G, Godio C, Caruso D, De Fabiani E, Crestani M.

Mol Membr Biol. 2012 Nov;29(7):257-66. doi: 10.3109/09687688.2012.729094. Epub 2012 Oct 24. Review.

PMID:
23095054

Supplemental Content

Support Center