Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits.

Ran C, Xu X, Raymond SB, Ferrara BJ, Neal K, Bacskai BJ, Medarova Z, Moore A.

J Am Chem Soc. 2009 Oct 28;131(42):15257-61. doi: 10.1021/ja9047043.

2.

Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease.

Zhang X, Tian Y, Li Z, Tian X, Sun H, Liu H, Moore A, Ran C.

J Am Chem Soc. 2013 Nov 6;135(44):16397-409. doi: 10.1021/ja405239v. Epub 2013 Oct 25.

3.

Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.

Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H.

J Am Chem Soc. 2014 Mar 5;136(9):3388-94. doi: 10.1021/ja4052922. Epub 2014 Feb 20.

PMID:
24555862
4.

Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer's disease.

Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, Sun H, Tanzi RE, Moore A, Ran C.

Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9734-9. doi: 10.1073/pnas.1505420112. Epub 2015 Jul 21.

5.

Amyloid-β Deposits Target Efficient Near-Infrared Fluorescent Probes: Synthesis, in Vitro Evaluation, and in Vivo Imaging.

Fu H, Tu P, Zhao L, Dai J, Liu B, Cui M.

Anal Chem. 2016 Feb 2;88(3):1944-50. doi: 10.1021/acs.analchem.5b04441. Epub 2016 Jan 12.

PMID:
26717442
6.

Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes.

Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H.

Mol Imaging. 2013 Jul-Aug;12(5):338-47.

PMID:
23759374
7.

In vivo detection of amyloid plaques in the mouse brain using the near-infrared fluorescence probe THK-265.

Okamura N, Mori M, Furumoto S, Yoshikawa T, Harada R, Ito S, Fujikawa Y, Arai H, Yanai K, Kudo Y.

J Alzheimers Dis. 2011;23(1):37-48. doi: 10.3233/JAD-2010-100270.

PMID:
20930313
8.

Development of fluorescent probes that bind and stain amyloid plaques in Alzheimer's disease.

Jung SJ, Park SH, Lee EJ, Park JH, Kong YB, Rho JK, Hur MG, Yang SD, Park YD.

Arch Pharm Res. 2015 Nov;38(11):1992-8. doi: 10.1007/s12272-015-0617-4. Epub 2015 May 27.

PMID:
26012373
9.

BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques.

Ono M, Watanabe H, Kimura H, Saji H.

ACS Chem Neurosci. 2012 Apr 18;3(4):319-24. doi: 10.1021/cn3000058. Epub 2012 Feb 17.

10.

In vivo detection of amyloid β deposition using ¹⁹F magnetic resonance imaging with a ¹⁹F-containing curcumin derivative in a mouse model of Alzheimer's disease.

Yanagisawa D, Amatsubo T, Morikawa S, Taguchi H, Urushitani M, Shirai N, Hirao K, Shiino A, Inubushi T, Tooyama I.

Neuroscience. 2011 Jun 16;184:120-7. doi: 10.1016/j.neuroscience.2011.03.071. Epub 2011 Apr 12.

PMID:
21497641
11.

Advances in development of fluorescent probes for detecting amyloid-β aggregates.

Xu MM, Ren WM, Tang XC, Hu YH, Zhang HY.

Acta Pharmacol Sin. 2016 Jun;37(6):719-30. doi: 10.1038/aps.2015.155. Epub 2016 Mar 21. Review.

12.

Efficient near-infrared in vivo imaging of amyoid-β deposits in Alzheimer's disease mouse models.

Schmidt A, Pahnke J.

J Alzheimers Dis. 2012;30(3):651-64. doi: 10.3233/JAD-2012-112168.

PMID:
22460331
13.

Highly Sensitive Near-Infrared Fluorophores for in Vivo Detection of Amyloid-β Plaques in Alzheimer's Disease.

Fu H, Cui M, Zhao L, Tu P, Zhou K, Dai J, Liu B.

J Med Chem. 2015 Sep 10;58(17):6972-83. doi: 10.1021/acs.jmedchem.5b00861. Epub 2015 Aug 25.

PMID:
26262759
14.

Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer's disease from tauopathies.

Rajasekhar K, Narayanaswamy N, Murugan NA, Viccaro K, Lee HG, Shah K, Govindaraju T.

Biosens Bioelectron. 2017 Jun 17;98:54-61. doi: 10.1016/j.bios.2017.06.030. [Epub ahead of print]

PMID:
28649025
15.

Preliminary evaluation of fluoro-pegylated benzyloxybenzenes for quantification of β-amyloid plaques by positron emission tomography.

Yang Y, Fu H, Cui M, Peng C, Liang Z, Dai J, Zhang Z, Lin C, Liu B.

Eur J Med Chem. 2015 Nov 2;104:86-96. doi: 10.1016/j.ejmech.2015.09.028. Epub 2015 Sep 26.

PMID:
26435514
16.

Characterization of AZD4694, a novel fluorinated Abeta plaque neuroimaging PET radioligand.

Juréus A, Swahn BM, Sandell J, Jeppsson F, Johnson AE, Johnström P, Neelissen JA, Sunnemark D, Farde L, Svensson SP.

J Neurochem. 2010 Aug;114(3):784-94. doi: 10.1111/j.1471-4159.2010.06812.x. Epub 2010 May 13.

17.

Imaging of β-amyloid plaques by near infrared fluorescent tracers: a new frontier for chemical neuroscience.

Staderini M, Martín MA, Bolognesi ML, Menéndez JC.

Chem Soc Rev. 2015 Apr 7;44(7):1807-19. doi: 10.1039/c4cs00337c. Epub 2015 Jan 27. Review.

PMID:
25622714
18.

Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging.

Ryu EK, Choe YS, Lee KH, Choi Y, Kim BT.

J Med Chem. 2006 Oct 5;49(20):6111-9.

PMID:
17004725
19.

IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques.

Kung MP, Hou C, Zhuang ZP, Zhang B, Skovronsky D, Trojanowski JQ, Lee VM, Kung HF.

Brain Res. 2002 Nov 29;956(2):202-10.

PMID:
12445687
20.

Synthesis of biphenyltrienes as probes for beta-amyloid plaques.

Zhuang ZP, Kung MP, Kung HF.

J Med Chem. 2006 May 4;49(9):2841-4.

Supplemental Content

Support Center