Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Transcriptomic profiling of the Saccharomyces cerevisiae response to quinine reveals a glucose limitation response attributable to drug-induced inhibition of glucose uptake.

dos Santos SC, Tenreiro S, Palma M, Becker J, Sá-Correia I.

Antimicrob Agents Chemother. 2009 Dec;53(12):5213-23. doi: 10.1128/AAC.00794-09. Epub 2009 Oct 5.

2.

Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration.

Buziol S, Warth L, Magario I, Freund A, Siemann-Herzberg M, Reuss M.

J Biotechnol. 2008 Apr 30;134(3-4):203-10. doi: 10.1016/j.jbiotec.2008.02.002. Epub 2008 Feb 13.

PMID:
18367282
3.

Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae.

Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wölfl S, Almonte C, Watkins SC.

Mol Cell Biol. 1999 Jul;19(7):4561-71.

4.
5.

Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae.

Petit T, Diderich JA, Kruckeberg AL, Gancedo C, Van Dam K.

J Bacteriol. 2000 Dec;182(23):6815-8.

6.

Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae.

Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E.

FEMS Yeast Res. 2002 Aug;2(3):283-91.

7.

Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae.

Diderich JA, Schepper M, van Hoek P, Luttik MA, van Dijken JP, Pronk JT, Klaassen P, Boelens HF, de Mattos MJ, van Dam K, Kruckeberg AL.

J Biol Chem. 1999 May 28;274(22):15350-9.

8.

In vivo regulation of glucose transporter genes at glucose concentrations between 0 and 500 mg/L in a wild type of Saccharomyces cerevisiae.

Klockow C, Stahl F, Scheper T, Hitzmann B.

J Biotechnol. 2008 Jun 1;135(2):161-7. doi: 10.1016/j.jbiotec.2008.03.009. Epub 2008 Mar 29.

PMID:
18455824
9.

Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p.

Sherwood PW, Carlson M.

Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7415-20.

11.

A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine.

Dos Santos SC, Sá-Correia I.

Mol Genet Genomics. 2011 Dec;286(5-6):333-46. doi: 10.1007/s00438-011-0649-5. Epub 2011 Sep 30.

PMID:
21960436
12.

An RT-qPCR approach to study the expression of genes responsible for sugar assimilation during rehydration of active dry yeast.

Vaudano E, Costantini A, Noti O, Garcia-Moruno E.

Food Microbiol. 2010 Sep;27(6):802-8. doi: 10.1016/j.fm.2010.04.010. Epub 2010 Apr 27.

PMID:
20630323
13.

Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision.

Rintala E, Wiebe MG, Tamminen A, Ruohonen L, Penttilä M.

BMC Microbiol. 2008 Mar 28;8:53. doi: 10.1186/1471-2180-8-53.

14.

Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae.

Liu Z, Boles E, Rosen BP.

J Biol Chem. 2004 Apr 23;279(17):17312-8. Epub 2004 Feb 14.

15.
16.

Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae.

Lafuente MJ, Gancedo C, Jauniaux JC, Gancedo JM.

Mol Microbiol. 2000 Jan;35(1):161-72.

17.
18.
19.

Supplemental Content

Support Center