Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery.

Sugimoto M, Yasuda H, Koda K, Suzuki M, Yamazaki M, Tezuka T, Kosugi C, Higuchi R, Watayo Y, Yagawa Y, Uemura S, Tsuchiya H, Azuma T.

J Hepatobiliary Pancreat Sci. 2010 Sep;17(5):629-36. doi: 10.1007/s00534-009-0199-y. Epub 2009 Oct 2.

PMID:
19798463
2.

[Navigation surgery in the biliary surgery and NOTES: carbon dioxide enhanced MDCT cholangiopancreatography and image overlay surgery].

Sugimoto M, Yasuda H, Koda K, Suzuki M, Yamazaki M, Tezuka T, Kosugi C, Higuchi R, Yagawa Y, Watayo Y.

Nihon Geka Gakkai Zasshi. 2008 Mar;109(2):77-83. Review. Japanese.

PMID:
18409584
3.

Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

Uchida M.

J Hepatobiliary Pancreat Sci. 2014 Apr;21(4):239-45. doi: 10.1002/jhbp.82. Epub 2014 Jan 27. Review.

PMID:
24464989
4.

Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion.

Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P.

J Hepatobiliary Pancreat Sci. 2011 Jul;18(4):506-9. doi: 10.1007/s00534-011-0385-6.

PMID:
21487758
5.

Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery.

Onda S, Okamoto T, Kanehira M, Fujioka S, Suzuki N, Hattori A, Yanaga K.

J Hepatobiliary Pancreat Sci. 2013 Apr;20(4):448-53. doi: 10.1007/s00534-012-0582-y.

PMID:
23269461
6.

Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study.

Suenaga H, Hoang Tran H, Liao H, Masamune K, Dohi T, Hoshi K, Mori Y, Takato T.

Int J Oral Sci. 2013 Jun;5(2):98-102. doi: 10.1038/ijos.2013.26. Epub 2013 May 24.

7.

Clinical application of a surgical navigation system based on virtual laparoscopy in laparoscopic gastrectomy for gastric cancer.

Hayashi Y, Misawa K, Oda M, Hawkes DJ, Mori K.

Int J Comput Assist Radiol Surg. 2016 May;11(5):827-36. doi: 10.1007/s11548-015-1293-z. Epub 2015 Oct 1.

PMID:
26429785
8.

A portable image overlay projection device for computer-aided open liver surgery.

Gavaghan KA, Peterhans M, Oliveira-Santos T, Weber S.

IEEE Trans Biomed Eng. 2011 Jun;58(6):1855-64. doi: 10.1109/TBME.2011.2126572. Epub 2011 Mar 14.

PMID:
21411401
9.

Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study.

Suenaga H, Tran HH, Liao H, Masamune K, Dohi T, Hoshi K, Takato T.

BMC Med Imaging. 2015 Nov 2;15:51. doi: 10.1186/s12880-015-0089-5.

10.

Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration.

Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD.

Urology. 2009 Apr;73(4):896-900. doi: 10.1016/j.urology.2008.11.040. Epub 2009 Feb 4.

PMID:
19193404
11.

Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

Wang J, Suenaga H, Liao H, Hoshi K, Yang L, Kobayashi E, Sakuma I.

Comput Med Imaging Graph. 2015 Mar;40:147-59. doi: 10.1016/j.compmedimag.2014.11.003. Epub 2014 Nov 18.

PMID:
25465067
12.

Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.

Caversaccio M, Langlotz F, Nolte LP, Häusler R.

Acta Otolaryngol. 2007 Apr;127(4):403-7.

PMID:
17453461
13.

Navigation surgery using an augmented reality for pancreatectomy.

Okamoto T, Onda S, Yasuda J, Yanaga K, Suzuki N, Hattori A.

Dig Surg. 2015;32(2):117-23. doi: 10.1159/000371860. Epub 2015 Mar 6.

PMID:
25766302
14.

Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.

Liao H, Ishihara H, Tran HH, Masamune K, Sakuma I, Dohi T.

Comput Med Imaging Graph. 2010 Jan;34(1):46-54. doi: 10.1016/j.compmedimag.2009.07.003. Epub 2009 Aug 11.

PMID:
19674871
15.

Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery.

Buchs NC, Volonte F, Pugin F, Toso C, Fusaglia M, Gavaghan K, Majno PE, Peterhans M, Weber S, Morel P.

J Surg Res. 2013 Oct;184(2):825-31. doi: 10.1016/j.jss.2013.04.032. Epub 2013 May 8.

PMID:
23684617
16.

Surgical navigation by autostereoscopic image overlay of integral videography.

Liao H, Hata N, Nakajima S, Iwahara M, Sakuma I, Dohi T.

IEEE Trans Inf Technol Biomed. 2004 Jun;8(2):114-21.

PMID:
15217256
17.

Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.

Volonté F, Buchs NC, Pugin F, Spaltenstein J, Schiltz B, Jung M, Hagen M, Ratib O, Morel P.

Int J Med Robot. 2013 Sep;9(3):e34-8. doi: 10.1002/rcs.1471. Epub 2012 Dec 13.

PMID:
23239589
18.

Carbon dioxide-enhanced virtual MDCT cholangiopancreatography.

Sugimoto M, Yasuda H, Koda K, Suzuki M, Yamazaki M, Tezuka T, Kosugi C, Higuchi R, Watayo Y, Yagawa Y, Uemura S, Tsuchiya H, Azuma T.

J Hepatobiliary Pancreat Sci. 2010 Sep;17(5):601-10. doi: 10.1007/s00534-009-0201-8. Epub 2009 Oct 6.

PMID:
19806296
19.

Accuracy evaluation of direct navigation with an isocentric 3D rotational X-ray system.

van de Kraats EB, van Walsum T, Kendrick L, Noordhoek NJ, Niessen WJ.

Med Image Anal. 2006 Apr;10(2):113-24. Epub 2005 Aug 11.

PMID:
16099196
20.

Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system.

Onda S, Okamoto T, Kanehira M, Suzuki F, Ito R, Fujioka S, Suzuki N, Hattori A, Yanaga K.

J Hepatobiliary Pancreat Sci. 2014 Apr;21(4):281-7. doi: 10.1002/jhbp.25. Epub 2013 Aug 22.

PMID:
23970384

Supplemental Content

Support Center