Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134


Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii.

Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, Dvorin JD, Gubbels MJ, Robertson SD, Steffen M, O'Keefe BR, Robbins PW, Samuelson J.

Eukaryot Cell. 2010 Feb;9(2):228-41. doi: 10.1128/EC.00197-09. Epub 2009 Sep 25.


Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation.

Samuelson J, Robbins PW.

Semin Cell Dev Biol. 2015 May;41:121-8. doi: 10.1016/j.semcdb.2014.11.008. Epub 2014 Dec 2. Review.


The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation.

Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, Samuelson J.

Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81. Epub 2007 Jul 2.


Unique Asn-linked oligosaccharides of the human pathogen Entamoeba histolytica.

Magnelli P, Cipollo JF, Ratner DM, Cui J, Kelleher D, Gilmore R, Costello CE, Robbins PW, Samuelson J.

J Biol Chem. 2008 Jun 27;283(26):18355-64. doi: 10.1074/jbc.M800725200. Epub 2008 Apr 16.


Asparagine-Linked Glycans of Cryptosporidium parvum Contain a Single Long Arm, Are Barely Processed in the Endoplasmic Reticulum (ER) or Golgi, and Show a Strong Bias for Sites with Threonine.

Haserick JR, Leon DR, Samuelson J, Costello CE.

Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S42-S53. doi: 10.1074/mcp.M116.066035. Epub 2017 Feb 8.


Protein Traffic to the Plasmodium falciparum apicoplast: evidence for a sorting branch point at the Golgi.

Heiny SR, Pautz S, Recker M, Przyborski JM.

Traffic. 2014 Dec;15(12):1290-304. doi: 10.1111/tra.12226. Epub 2014 Oct 15.


Changes in the N-glycome, glycoproteins with Asn-linked glycans, of Giardia lamblia with differentiation from trophozoites to cysts.

Ratner DM, Cui J, Steffen M, Moore LL, Robbins PW, Samuelson J.

Eukaryot Cell. 2008 Nov;7(11):1930-40. doi: 10.1128/EC.00268-08. Epub 2008 Sep 26.


Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii--host cell interactions.

Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S.

Mol Cell Proteomics. 2008 May;7(5):891-910. doi: 10.1074/mcp.M700391-MCP200. Epub 2008 Jan 9.


Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum.

Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI.

Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12352-7.


The dual origin of Toxoplasma gondii N-glycans.

Garénaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J, Michalski JC, Cacan R, Guérardel Y, Schwarz RT.

Biochemistry. 2008 Nov 25;47(47):12270-6. doi: 10.1021/bi801090a.


Unique features of apicoplast DNA gyrases from Toxoplasma gondii and Plasmodium falciparum.

Nagano S, Lin TY, Edula JR, Heddle JG.

BMC Bioinformatics. 2014 Dec 19;15:416. doi: 10.1186/s12859-014-0416-9.


Tic22 is an essential chaperone required for protein import into the apicoplast.

Glaser S, van Dooren GG, Agrawal S, Brooks CF, McFadden GI, Striepen B, Higgins MK.

J Biol Chem. 2012 Nov 16;287(47):39505-12. doi: 10.1074/jbc.M112.405100. Epub 2012 Oct 1.


Unusual N-glycan structures required for trafficking Toxoplasma gondii GAP50 to the inner membrane complex regulate host cell entry through parasite motility.

Fauquenoy S, Hovasse A, Sloves PJ, Morelle W, Dilezitoko Alayi T, Slomianny C, Werkmeister E, Schaeffer C, Van Dorsselaer A, Tomavo S.

Mol Cell Proteomics. 2011 Sep;10(9):M111.008953. doi: 10.1074/mcp.M111.008953. Epub 2011 May 24. Erratum in: Mol Cell Proteomics. 2011 Nov;10(11). doi:10.1074/mcp.A111.008953. Dilezitoko Ayali, Tchilabalo [corrected to Dilezitoko Alayi, Tchilabalo].


An apicoplast localized ubiquitylation system is required for the import of nuclear-encoded plastid proteins.

Agrawal S, Chung DW, Ponts N, van Dooren GG, Prudhomme J, Brooks CF, Rodrigues EM, Tan JC, Ferdig MT, Striepen B, Le Roch KG.

PLoS Pathog. 2013;9(6):e1003426. doi: 10.1371/journal.ppat.1003426. Epub 2013 Jun 13.


Comparative Analysis of Apicoplast-Targeted Protein Extension Lengths in Apicomplexan Parasites.

Seliverstov AV, Zverkov OA, Istomina SN, Pirogov SA, Kitsis PS.

Biomed Res Int. 2015;2015:452958. doi: 10.1155/2015/452958. Epub 2015 May 31.


Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study.

Perez-Cervera Y, Harichaux G, Schmidt J, Debierre-Grockiego F, Dehennaut V, Bieker U, Meurice E, Lefebvre T, Schwarz RT.

Amino Acids. 2011 Mar;40(3):847-56. doi: 10.1007/s00726-010-0702-4. Epub 2010 Jul 27.


New proteins in the apicoplast membranes: time to rethink apicoplast protein targeting.

Lim L, Kalanon M, McFadden GI.

Trends Parasitol. 2009 May;25(5):197-200. doi: 10.1016/ Epub 2009 Apr 5.


A comparative study on the heparin-binding proteomes of Toxoplasma gondii and Plasmodium falciparum.

Zhang Y, Jiang N, Jia B, Chang Z, Zhang Y, Wei X, Zhou J, Wang H, Zhao X, Yu S, Song M, Tu Z, Lu H, Yin J, Wahlgren M, Chen Q.

Proteomics. 2014 Aug;14(15):1737-45. doi: 10.1002/pmic.201400003. Epub 2014 Jul 3.


Toxoplasma gondii Toc75 Functions in Import of Stromal but not Peripheral Apicoplast Proteins.

Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B.

Traffic. 2015 Dec;16(12):1254-69. doi: 10.1111/tra.12333. Epub 2015 Nov 2.

Supplemental Content

Support Center