Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 448


Conditional knockout of Mn-SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity.

Lustgarten MS, Jang YC, Liu Y, Muller FL, Qi W, Steinhelper M, Brooks SV, Larkin L, Shimizu T, Shirasawa T, McManus LM, Bhattacharya A, Richardson A, Van Remmen H.

Am J Physiol Cell Physiol. 2009 Dec;297(6):C1520-32. doi: 10.1152/ajpcell.00372.2009.


MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

Lustgarten MS, Jang YC, Liu Y, Qi W, Qin Y, Dahia PL, Shi Y, Bhattacharya A, Muller FL, Shimizu T, Shirasawa T, Richardson A, Van Remmen H.

Aging Cell. 2011 Jun;10(3):493-505. doi: 10.1111/j.1474-9726.2011.00695.x.


Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging.

Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang TT, Epstein CJ, Van Remmen H.

Mech Ageing Dev. 2006 Mar;127(3):298-306.


Angiotensin II-induced reduction in exercise capacity is associated with increased oxidative stress in skeletal muscle.

Inoue N, Kinugawa S, Suga T, Yokota T, Hirabayashi K, Kuroda S, Okita K, Tsutsui H.

Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1202-10. doi: 10.1152/ajpheart.00534.2011.


Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle.

Ploquin C, Chabi B, Fouret G, Vernus B, Feillet-Coudray C, Coudray C, Bonnieu A, Ramonatxo C.

Am J Physiol Endocrinol Metab. 2012 Apr 15;302(8):E1000-8. doi: 10.1152/ajpendo.00652.2011.


Loss of parietal cell superoxide dismutase leads to gastric oxidative stress and increased injury susceptibility in mice.

Jones MK, Zhu E, Sarino EV, Padilla OR, Takahashi T, Shimizu T, Shirasawa T.

Am J Physiol Gastrointest Liver Physiol. 2011 Sep;301(3):G537-46. doi: 10.1152/ajpgi.00177.2011.


Activation of aconitase in mouse fast-twitch skeletal muscle during contraction-mediated oxidative stress.

Zhang SJ, Sandstr├Âm ME, Lanner JT, Thorell A, Westerblad H, Katz A.

Am J Physiol Cell Physiol. 2007 Sep;293(3):C1154-9.


Complex III releases superoxide to both sides of the inner mitochondrial membrane.

Muller FL, Liu Y, Van Remmen H.

J Biol Chem. 2004 Nov 19;279(47):49064-73.


Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.

Yokota T, Kinugawa S, Hirabayashi K, Matsushima S, Inoue N, Ohta Y, Hamaguchi S, Sobirin MA, Ono T, Suga T, Kuroda S, Tanaka S, Terasaki F, Okita K, Tsutsui H.

Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1069-77. doi: 10.1152/ajpheart.00267.2009.


The transcriptional coregulator PGC-1╬▓ controls mitochondrial function and anti-oxidant defence in skeletal muscles.

Gali Ramamoorthy T, Laverny G, Schlagowski AI, Zoll J, Messaddeq N, Bornert JM, Panza S, Ferry A, Geny B, Metzger D.

Nat Commun. 2015 Dec 17;6:10210. doi: 10.1038/ncomms10210.


Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

O'Connell G, Guo G, Stricker J, Quinn LS, Ma A, Pistilli EE.

J Appl Physiol (1985). 2015 Feb 15;118(4):437-48. doi: 10.1152/japplphysiol.00704.2014.


Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus.

Shi Y, Pulliam DA, Liu Y, Hamilton RT, Jernigan AL, Bhattacharya A, Sloane LB, Qi W, Chaudhuri A, Buffenstein R, Ungvari Z, Austad SN, Van Remmen H.

Am J Physiol Regul Integr Comp Physiol. 2013 Mar 1;304(5):R343-55. doi: 10.1152/ajpregu.00139.2012.


The KATP channel Kir6.2 subunit content is higher in glycolytic than oxidative skeletal muscle fibers.

Banas K, Clow C, Jasmin BJ, Renaud JM.

Am J Physiol Regul Integr Comp Physiol. 2011 Oct;301(4):R916-25. doi: 10.1152/ajpregu.00663.2010.


Topology of superoxide production from different sites in the mitochondrial electron transport chain.

St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD.

J Biol Chem. 2002 Nov 22;277(47):44784-90.


Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermyofibrillar mitochondria.

Servais S, Couturier K, Koubi H, Rouanet JL, Desplanches D, Sornay-Mayet MH, Sempore B, Lavoie JM, Favier R.

Free Radic Biol Med. 2003 Jul 1;35(1):24-32.


Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat.

Warren BE, Lou PH, Lucchinetti E, Zhang L, Clanachan AS, Affolter A, Hersberger M, Zaugg M, Lemieux H.

Am J Physiol Endocrinol Metab. 2014 Mar;306(6):E658-67. doi: 10.1152/ajpendo.00511.2013. Erratum in: Am J Physiol Endocrinol Metab. 2014 Dec 15;307(12):E1166.


Mitochondrial superoxide production in skeletal muscle fibers of the rat and decreased fiber excitability.

van der Poel C, Edwards JN, Macdonald WA, Stephenson DG.

Am J Physiol Cell Physiol. 2007 Apr;292(4):C1353-60.


Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise.

Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD.

J Biol Chem. 2015 Jan 2;290(1):209-27. doi: 10.1074/jbc.M114.619072.


Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity.

Broome CS, Kayani AC, Palomero J, Dillmann WH, Mestril R, Jackson MJ, McArdle A.

FASEB J. 2006 Jul;20(9):1549-51.


Increased mitochondrial matrix-directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria.

Bhattacharya A, Lustgarten M, Shi Y, Liu Y, Jang YC, Pulliam D, Jernigan AL, Van Remmen H.

Free Radic Biol Med. 2011 Mar 1;50(5):592-601. doi: 10.1016/j.freeradbiomed.2010.12.014.

Items per page

Supplemental Content

Support Center